The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277184 E.g.f.: A(x) = x*exp(A(x) - A(x)^2) + A(x)^2. 2
1, 4, 33, 424, 7505, 170496, 4744873, 156529024, 5974216641, 258970009600, 12566664261041, 674795685758976, 39720422453156497, 2543022838953017344, 175923061842374645625, 13076498369827187163136, 1039320236257785348449537, 87954586779787961844105216, 7895887532418683295505005121, 749448035808323155802521600000, 74989090946223628553344278643281, 7888932153987131087072869161631744 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) exp(A(x) - A(x)^2) = LambertW(-x)/(-x).
(2) A(x) = -LambertW(-x) + A(x)^2.
(3) A(x) = C( -LambertW(-x) ), where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers.
a(n) = Sum_{k=1..n} A000108(k-1) * n^(n-k) * k! * binomial(n-1,k-1), where A000108 is the Catalan numbers.
a(n) ~ 2^(2*n - 1/2) * n^(n-1) / (sqrt(3) * exp(3*n/4)). - Vaclav Kotesovec, Oct 10 2016
EXAMPLE
E.g.f.: A(x) = x + 4*x^2/2! + 33*x^3/3! + 424*x^4/4! + 7505*x^5/5! + 170496*x^6/6! + 4744873*x^7/7! + 156529024*x^8/8! + 5974216641*x^9/9! + 258970009600*x^10/10! +...
such that
A(x) - A(x)^2 = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 625*x^5/5! + 7776*x^6/6! + 117649*x^7/7! +...+ n^(n-1)*x^n/n! +...
which equals -LambertW(-x).
RELATED SERIES.
A(x)^2 = 2*x^2/2! + 24*x^3/3! + 360*x^4/4! + 6880*x^5/5! + 162720*x^6/6! + 4627224*x^7/7! + 154431872*x^8/8! + 5931169920*x^9/9! + 257970009600*x^10/10! +...
exp(A(x)) = 1 + x + 5*x^2/2! + 46*x^3/3! + 629*x^4/4! + 11556*x^5/5! + 268537*x^6/6! + 7578040*x^7/7! + 252168009*x^8/8! + 9677553040*x^9/9! + 421010089901*x^10/10! +...
exp(A(x)^2) = 1 + 2*x^2/2! + 24*x^3/3! + 372*x^4/4! + 7360*x^5/5! + 179400*x^6/6! + 5228664*x^7/7! + 177953552*x^8/8! + 6940738368*x^9/9! + 305570622240*x^10/10! +...
MATHEMATICA
Rest[CoefficientList[Series[(1 - Sqrt[1 + 4*LambertW[-x]])/2, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Oct 10 2016 *)
PROG
(PARI) {a(n) = sum(k=1, n, n^(n-k) * (2*k-2)!/(k-1)!^2 * (n-1)!/(n-k)! )}
for(n=1, 25, print1(a(n), ", "))
(PARI) {a(n) = my(A=x); for(i=0, n, A = x*exp(A - A^2 +x*O(x^n)) + A^2 ); n!*polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A162655 A216135 A052885 * A192548 A119821 A102321
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 15:08 EDT 2024. Contains 372968 sequences. (Running on oeis4.)