login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277181
E.g.f.: A(x) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o ..., the composition of functions x*exp(x^n) for n=...,3,2,1.
4
1, 2, 9, 76, 605, 7326, 97237, 1414904, 24130521, 467773210, 9636459041, 215484787332, 5351427245749, 141098897750006, 3995090542811565, 120415709525270896, 3833710980240095537, 130061101059127375794, 4649348119132468282681, 174231442774945244111420, 6859230825811289134828941, 282654139723294546295799502, 12162998707984268597918477189, 546138551651775603897277518696
OFFSET
1,2
COMMENTS
The compositional transpose of functions x*exp(x^n) yields the e.g.f. of A277180.
LINKS
FORMULA
E.g.f. A(x) satisfies: Series_Reversion(A(x)) = ... (LambertW(4*x^4)/4)^(1/4) o (LambertW(3*x^3)/3)^(1/3) o (LambertW(2*x^2)/2)^(1/2) o LambertW(x), the composition of functions (LambertW(n*x^n)/n)^(1/n) for n = 1,2,3,...
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 7326*x^6/6! + 97237*x^7/7! + 1414904*x^8/8! + 24130521*x^9/9! + 467773210*x^10/10! + 9636459041*x^11/11! + 215484787332*x^12/12! +...
such that A(x) is the limit of composition of functions x*exp(x^n):
A(x) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o x*exp(x^5) o ...
working from left to right.
Illustration of generating method.
Start with F_0(x) = x and then continue as follows.
F_1(x) = x*exp(x),
F_2(x) = F_1( x*exp(x^2) ),
F_3(x) = F_2( x*exp(x^3) ),
F_4(x) = F_3( x*exp(x^4) ),
F_5(x) = F_4( x*exp(x^5) ),
...
F_{n+1}(x) = F_{n}( x*exp(x^(n+1)) ),
...
the limit of which equals the e.g.f. A(x).
The above series begin:
F_1(x) = x + 2*x^2/2! + 3*x^3/3! + 4*x^4/4! + 5*x^5/5! + 6*x^6/6! +...
F_2(x) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 245*x^5/5! + 1926*x^6/6! +...
F_3(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 485*x^5/5! + 5166*x^6/6! +...
F_4(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 6606*x^6/6! +...
F_5(x) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 7326*x^6/6! +...
...
A related series begins:
Series_Reversion(A(x)) = x - 2*x^2/2! + 3*x^3/3! - 16*x^4/4! + 385*x^5/5! - 6696*x^6/6! + 104419*x^7/7! - 1785344*x^8/8! + 37367649*x^9/9! - 986989600*x^10/10! + 30811625251*x^11/11! - 1031073660288*x^12/12! +...
PROG
(PARI) {a(n) = my(A=x +x*O(x^n)); if(n<=0, 0, for(i=1, n, A = subst(A, x, x*exp(x^i +x*O(x^n))))); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x+x*O(x^n)); if(n<=0, 0, for(i=1, n, A = A*exp(A^(n-i+1)))); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A277183 (log(A(x)/x)), A277180, A136751.
Cf. A278332.
Sequence in context: A335378 A232471 A357539 * A105785 A245406 A337558
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 04 2016
STATUS
approved