login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A278332 E.g.f. equals the limit of the average of all permutations of the compositions of the functions x*exp(x^k), for k=1..n, as n increases. 3
1, 2, 9, 88, 905, 12666, 220297, 4506440, 104707521, 2758506850 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..10.

FORMULA

E.g.f.: A(x) = limit_{n->oo} (1/n!) * Sum(all permutations of compositions of functions x*exp(x^k) for k=1..n).

EXAMPLE

E.g.f.: A(x) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 905*x^5/5! + 12666*x^6/6! + 220297*x^7/7! + 4506440*x^8/8! + 104707521*x^9/9! + 2758506850*x^10/10! +...

Generating method.

Define F(n,x) as the average of the sum over all n! permutations of the compositions of x*exp(x^k) for k=1..n, then the e.g.f. of this sequence is the limit of the functions F(n,x) as n grows.

Examples of some initial functions F(n,x) are as follows.

At n=1, F(1,x) = x*exp(x).

At n=2, F(2,x) = (1/2!)*([x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 64*x^4/4! + 425*x^5/5! + 3486*x^6/6! +...

At n=3, F(3,x) = (1/3!)*([x*exp(x) o x*exp(x^2) o x*exp(x^3)] + [x*exp(x^2) o x*exp(x) o x*exp(x^3)] + [x*exp(x) o x*exp(x^3) o x*exp(x^2)] + [x*exp(x^3) o x*exp(x) o x*exp(x^2)] + [x*exp(x^2) o x*exp(x^3) o x*exp(x)] + [x*exp(x^3) o x*exp(x^2) o x*exp(x)]) = x + 2*x^2/2! + 9*x^3/3! + 88*x^4/4! + 785*x^5/5! + 9426*x^6/6! +...

etc.

PROG

(PARI) /* Informal code to generate terms (ran over 100 hrs for 10 terms!) */

{F(n) = x*exp(x^n +x*O(x^16))}

{P(n) = vector(n!, k, numtoperm(n, k) )}

{A(n) = my(H=0); for(k=1, n!, G=x; for(j=1, n, G=subst(G, x, F(P(n)[k][j]) )); H=H+G); H/n!}

{Vec(serlaplace(A(6)))}

CROSSREFS

Cf. A278333(n) = a(n+1)/(n+1) for n>=0.

Cf. A277180, A277181.

Sequence in context: A330475 A037172 A106163 * A135747 A270862 A259794

Adjacent sequences:  A278329 A278330 A278331 * A278333 A278334 A278335

KEYWORD

nonn,more

AUTHOR

Paul D. Hanna, Nov 18 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 29 02:18 EST 2020. Contains 332353 sequences. (Running on oeis4.)