login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278329
Number of set partitions of [3n] into n subsets of size three such that all element sums are squares.
5
1, 0, 0, 0, 0, 29, 35, 340, 26579, 390480, 9514434, 145963193, 5474045270, 87251356528
OFFSET
0,6
EXAMPLE
a(5) = 29: {{1,3,5}, {2,9,14}, {4,6,15}, {7,8,10}, {11,12,13}},
{{1,3,5}, {2,11,12}, {4,6,15}, {7,8,10}, {9,13,14}},
{{1,2,6}, {3,7,15}, {4,8,13}, {5,9,11}, {10,12,14}},
{{1,2,6}, {3,7,15}, {4,10,11}, {5,8,12}, {9,13,14}},
{{1,3,5}, {2,8,15}, {4,7,14}, {6,9,10}, {11,12,13}},
{{1,3,5}, {2,8,15}, {4,10,11}, {6,7,12}, {9,13,14}},
{{1,9,15}, {2,3,4}, {5,6,14}, {7,8,10}, {11,12,13}},
{{1,9,15}, {2,3,4}, {5,7,13}, {6,8,11}, {10,12,14}},
{{1,2,6}, {3,9,13}, {4,7,14}, {5,8,12}, {10,11,15}},
{{1,2,6}, {3,8,14}, {4,9,12}, {5,7,13}, {10,11,15}},
{{1,3,5}, {2,9,14}, {4,8,13}, {6,7,12}, {10,11,15}},
{{1,3,12}, {2,6,8}, {4,5,7}, {9,13,14}, {10,11,15}},
{{1,11,13}, {2,3,4}, {5,6,14}, {7,8,10}, {9,12,15}},
{{1,3,5}, {2,10,13}, {4,7,14}, {6,8,11}, {9,12,15}},
{{1,2,6}, {3,8,14}, {4,10,11}, {5,7,13}, {9,12,15}},
{{1,10,14}, {2,3,4}, {5,7,13}, {6,8,11}, {9,12,15}},
{{1,2,6}, {3,10,12}, {4,7,14}, {5,9,11}, {8,13,15}},
{{1,3,5}, {2,11,12}, {4,7,14}, {6,9,10}, {8,13,15}},
{{1,3,5}, {2,9,14}, {4,10,11}, {6,7,12}, {8,13,15}},
{{1,10,14}, {2,3,4}, {5,9,11}, {6,7,12}, {8,13,15}},
{{1,6,9}, {2,3,11}, {4,5,7}, {8,13,15}, {10,12,14}},
{{1,4,11}, {2,5,9}, {3,6,7}, {8,13,15}, {10,12,14}},
{{1,2,6}, {3,10,12}, {4,8,13}, {5,9,11}, {7,14,15}},
{{1,3,5}, {2,11,12}, {4,8,13}, {6,9,10}, {7,14,15}},
{{1,2,6}, {3,9,13}, {4,10,11}, {5,8,12}, {7,14,15}},
{{1,3,5}, {2,10,13}, {4,9,12}, {6,8,11}, {7,14,15}},
{{1,11,13}, {2,3,4}, {5,8,12}, {6,9,10}, {7,14,15}},
{{1,6,9}, {2,4,10}, {3,5,8}, {7,14,15}, {11,12,13}},
{{1,5,10}, {2,6,8}, {3,4,9}, {7,14,15}, {11,12,13}}.
MATHEMATICA
A278329[0] = 1;
A278329[n_] := Length@FindClique[Graph[First@# <-> Last@# & /@ Select[Subsets[Select[Flatten[IntegerPartitions[#^2, {3}, Range[3 n]] & /@ Range[Sqrt[9 n - 3]], 1], DuplicateFreeQ], {2}], DuplicateFreeQ@Flatten@# &]], {n}, All] (* Davin Park, Jan 26 2017 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Alois P. Heinz, Nov 18 2016
EXTENSIONS
a(12)-a(13) from Bert Dobbelaere, Apr 12 2019
STATUS
approved