The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135747 E.g.f.: A(x) = Sum_{n>=0} exp( (n^2-1)*x ) * x^n/n!. 4
 1, 0, 2, 9, 88, 985, 14976, 278929, 6208000, 163268865, 4979147680, 173500986241, 6838921208736, 302161792811905, 14840867887070512, 804732692174218305, 47888731015720316416, 3110871265807567331329, 219546952410733092279360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS n divides a(n) for n>=1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 FORMULA a(n) = Sum_{k=0..n} C(n,k) * (k^2-1)^(n-k). O.g.f.: Sum_{n>=0} x^n / (1 - (n^2-1)*x)^(n+1). - Paul D. Hanna, Jul 30 2014 MATHEMATICA Flatten[{1, Table[Sum[Binomial[n, k]*(k^2 - 1)^(n - k), {k, 0, n}], {n, 1, 25}]}] (* G. C. Greubel, Nov 05 2016 *) PROG (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(k^2-1)^(n-k))} for(n=0, 25, print1(a(n), ", ")) (PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp((k^2-1)*x +x*O(x^n))*x^k/k!), n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* From Sum_{n>=0} x^n/(1 - (n^2-1)*x)^(n+1): */ {a(n)=polcoeff(sum(k=0, n, x^k/(1-(k^2-1)*x +x*O(x^n))^(k+1)), n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. variants: A135742, A135743, A135744, A135745, A135746. Sequence in context: A037172 A106163 A278332 * A270862 A259794 A132431 Adjacent sequences:  A135744 A135745 A135746 * A135748 A135749 A135750 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 19:33 EDT 2021. Contains 346359 sequences. (Running on oeis4.)