login
A135747
E.g.f.: A(x) = Sum_{n>=0} exp( (n^2-1)*x ) * x^n/n!.
4
1, 0, 2, 9, 88, 985, 14976, 278929, 6208000, 163268865, 4979147680, 173500986241, 6838921208736, 302161792811905, 14840867887070512, 804732692174218305, 47888731015720316416, 3110871265807567331329, 219546952410733092279360
OFFSET
0,3
COMMENTS
n divides a(n) for n>=1.
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * (k^2-1)^(n-k).
O.g.f.: Sum_{n>=0} x^n / (1 - (n^2-1)*x)^(n+1). - Paul D. Hanna, Jul 30 2014
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*(k^2 - 1)^(n - k), {k, 0, n}], {n, 1, 25}]}] (* G. C. Greubel, Nov 05 2016 *)
PROG
(PARI) {a(n)=sum(k=0, n, binomial(n, k)*(k^2-1)^(n-k))}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, exp((k^2-1)*x +x*O(x^n))*x^k/k!), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* From Sum_{n>=0} x^n/(1 - (n^2-1)*x)^(n+1): */
{a(n)=polcoeff(sum(k=0, n, x^k/(1-(k^2-1)*x +x*O(x^n))^(k+1)), n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A359903 A360433 A278332 * A270862 A259794 A347013
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 27 2007
STATUS
approved