login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277183
E.g.f.: logarithm of G(x)/x where G(x) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o ..., a composition of functions x*exp(x^n) for n = ...,3,2,1.
2
1, 2, 12, 48, 540, 5040, 53760, 745920, 12897360, 206236800, 3682657440, 83366236800, 1849952744640, 45496897205760, 1176291493977600, 32097739145472000, 983522184476832000, 31186123650255974400, 1021800029809932172800, 35859334900163943168000, 1320567044275182140236800, 50849016060752080883712000, 2063131407115000462188748800, 86946484539570696351914803200
OFFSET
1,2
COMMENTS
E.g.f. equals the logarithm of G(x)/x, where G(x) equals the e.g.f. of A277181.
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 48*x^4/4! + 540*x^5/5! + 5040*x^6/6! + 53760*x^7/7! + 745920*x^8/8! + 12897360*x^9/9! + 206236800*x^10/10! + 3682657440*x^11/11! + 83366236800*x^12/12! + 1849952744640*x^13/13! + 45496897205760*x^14/14! + 1176291493977600*x^15/15! + 32097739145472000*x^16/16! +...
such that x*exp(A(x)) equals the infinite composition of functions:
x*exp(A(x)) = x*exp(x) o x*exp(x^2) o x*exp(x^3) o x*exp(x^4) o ...,
which expands to begin:
x*exp(A(x)) = x + 2*x^2/2! + 9*x^3/3! + 76*x^4/4! + 605*x^5/5! + 7326*x^6/6! + 97237*x^7/7! + 1414904*x^8/8! + 24130521*x^9/9! + 467773210*x^10/10! + 9636459041*x^11/11! + 215484787332*x^12/12! +...+ A277181(n)*x^n/n! +...
A related series expansion begins
exp(A(x)) = 1 + x + 3*x^2/2! + 19*x^3/3! + 121*x^4/4! + 1221*x^5/5! + 13891*x^6/6! + 176863*x^7/7! + 2681169*x^8/8! + 46777321*x^9/9! + 876041731*x^10/10! + 17957065611*x^11/11! + 411648249673*x^12/12! +...
GENERATING METHOD.
One can generate the e.g.f. by the following process.
Find A(x) = L_1 by working backward using the relation
L_1 = L_2 + x^1*exp(1*L_2)
L_2 = L_3 + x^2*exp(2*L_3)
L_3 = L_4 + x^3*exp(3*L_4)
L_4 = L_5 + x^4*exp(4*L_5)
...
L_{n} = L_{n+1} + x^n*exp( n*L_{n+1} )
...
Explicitly, the initial series begin:
L_1 = x + x^2 + 2*x^3 + 2*x^4 + 9/2*x^5 + 7*x^6 + 32/3*x^7 + 37/2*x^8 +...
L_2 = x^2 + x^3 + x^4 + 3*x^5 + 3*x^6 + 6*x^7 + 8*x^8 + 20*x^9 + 22*x^10 +...
L_3 = x^3 + x^4 + x^5 + x^6 + 4*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + 35/2*x^11 +...
L_4 = x^4 + x^5 + x^6 + x^7 + x^8 + 5*x^9 + 5*x^10 + 10*x^11 + 10*x^12 +...
L_5 = x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + 6*x^11 + 6*x^12 + 12*x^13 + 12*x^14 +...
L_6 = x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + 7*x^13 + 7*x^14 + 14*x^15 + 14*x^16 +...
L_7 = x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + 8*x^15 + 8*x^16 + 16*x^17 + 16*x^18 +...
L_8 = x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + x^16 + 9*x^17 + 9*x^18 + 18*x^19 + 18*x^20 +...
...
PROG
(PARI) {a(n) = my(A=x +x^2*O(x^n)); if(n<=0, 0, for(i=1, n, A = subst(A, x, x*exp(x^i +x^2*O(x^n))))); n!*polcoeff(log(A/x), n)}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=x +x^2*O(x^n)); if(n<=0, 0, for(i=1, n, A = A*exp(A^(n-i+1)))); n!*polcoeff(log(A/x), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A277181 (x*exp(A(x))), A277182.
Sequence in context: A088311 A359118 A338522 * A052588 A139239 A060238
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 07 2016
STATUS
approved