login
A088311
Number of sets of lists with distinct list sizes, cf. A000262.
21
1, 1, 2, 12, 48, 360, 2880, 25200, 241920, 2903040, 36288000, 479001600, 7185024000, 112086374400, 1917922406400, 35307207936000, 669529276416000, 13516122267648000, 294509190463488000, 6568835422076928000, 155705728523304960000, 3882911605049917440000
OFFSET
0,3
COMMENTS
a(n) also enumerates ordered pairs of permutation functions on n elements where f(g(x)) = g(g(f(x))). - Chad Brewbaker, Mar 27 2014
LINKS
FORMULA
E.g.f: Product_{m>0} (1+x^m).
a(n) = n! * A000009(n).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> n!*b(n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
MATHEMATICA
nn = 19; Drop[ Range[0, nn]! CoefficientList[ Series[ Product[1 + x^i, {i, nn}], {x, 0, nn}], x], 0] (* Geoffrey Critzer, Aug 05 2013; adapted to new offset by Vincenzo Librandi, Mar 28 2014 *)
nmax = 20; CoefficientList[Series[Product[1/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Aug 19 2015 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace(eta(x^2)/eta(x))) \\ Joerg Arndt, Aug 06 2013
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(Laplace( (&*[1+x^j: j in [1..m+2]]) ))); // G. C. Greubel, Dec 14 2022
(SageMath)
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(0, 1) # Peter Luschny's code of A000009 and A166861
b = EulerTransform(a)
[factorial(n)*b(n) for n in range(41)] # G. C. Greubel, Dec 14 2022
CROSSREFS
Other ordered permutation function pair relations are A000012, A000085, A000142, A001044, A053529.
Sequence in context: A232663 A052591 A029766 * A359118 A338522 A277183
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Nov 05 2003
EXTENSIONS
Prepended a(0) = 1, Joerg Arndt, Aug 06 2013
STATUS
approved