login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052591
Expansion of e.g.f. x/((1-x)(1-x^2)).
4
0, 1, 2, 12, 48, 360, 2160, 20160, 161280, 1814400, 18144000, 239500800, 2874009600, 43589145600, 610248038400, 10461394944000, 167382319104000, 3201186852864000, 57621363351552000, 1216451004088320000, 24329020081766400000, 562000363888803840000
OFFSET
0,3
COMMENTS
Stirling transform of 2*a(n) = [2,4,24,96,...] is A052841(n+1) = [2,6,38,270,...]. - Michael Somos, Mar 04 2004
a(n) is the number of even fixed points in all permutations of {1,2,...,n+1}. Example: a(2)=2 because we have 12'3, 132, 312, 213, 231, and 32'1, the even fixed points being marked. - Emeric Deutsch, Jul 18 2009
FORMULA
Recurrence: {a(1)=1, a(0)=0, (-n^3 - 5*n^2 - 8*n - 4)*a(n) + (-2-n)*a(n+1) + (n+1)*a(n+2) = 0}.
a(n) = ((1/4)*(-1)^(1-n) + (1/2)*n + 1/4)*n!.
E.g.f.: x/((1-x)*(1-x^2)).
From Emeric Deutsch, Jul 18 2009: (Start)
a(n) = (n+1)!/2 if n is odd; a(n) = n!*n/2 if n is even.
a(n) = (n+1)! - A052558(n). (End)
a(n) = n!*A008619(n-1), n > 1. - R. J. Mathar, Nov 27 2011
Sum_{n>=1} 1/a(n) = 2*(CoshIntegral(1) + cosh(1) - gamma - 1) = 2*(A099284 + A073743 - A001620 - 1). - Amiram Eldar, Jan 22 2023
MAPLE
spec := [S, {S=Prod(Z, Sequence(Z), Sequence(Prod(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
G(x):=x/(1-x)/(1-x^2): f[0]:=G(x): for n from 1 to 19 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=0..19); # Zerinvary Lajos, Apr 03 2009
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff(x/(1-x)/(1-x^2)+x*O(x^n), n))
CROSSREFS
Cf. A052558. - Emeric Deutsch, Jul 18 2009
Sequence in context: A052569 A221663 A232663 * A029766 A088311 A359118
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved