login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052569
E.g.f. 1/((1-x)(1-x^3)).
1
1, 1, 2, 12, 48, 240, 2160, 15120, 120960, 1451520, 14515200, 159667200, 2395008000, 31135104000, 435891456000, 7846046208000, 125536739328000, 2134124568576000, 44816615940096000, 851515702861824000
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1/(-1+x)/(-1+x^3)
Recurrence: {a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0}
(1/3*n+2/3+Sum(1/9*(-1+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^2+_Z+1)))*n!
a(n) = n!*A008620(n). - R. J. Mathar, Nov 27 2011
MAPLE
spec := [S, {S=Prod(Sequence(Prod(Z, Z, Z)), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
# Alternative:
f:= gfun:-rectoproc({ a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Sep 25 2019
MATHEMATICA
With[{nn=20}, CoefficientList[Series[1/((1-x)(1-x^3)), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Aug 25 2012 *)
CROSSREFS
Sequence in context: A333728 A354131 A370696 * A221663 A232663 A052591
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved