login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052569 E.g.f. 1/((1-x)(1-x^3)). 1
1, 1, 2, 12, 48, 240, 2160, 15120, 120960, 1451520, 14515200, 159667200, 2395008000, 31135104000, 435891456000, 7846046208000, 125536739328000, 2134124568576000, 44816615940096000, 851515702861824000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Robert Israel, Table of n, a(n) for n = 0..448

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 512

FORMULA

E.g.f.: 1/(-1+x)/(-1+x^3)

Recurrence: {a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0}

(1/3*n+2/3+Sum(1/9*(-1+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^2+_Z+1)))*n!

a(n) = n!*A008620(n). - R. J. Mathar, Nov 27 2011

MAPLE

spec := [S, {S=Prod(Sequence(Prod(Z, Z, Z)), Sequence(Z))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

# Alternative:

f:= gfun:-rectoproc({ a(1)=1, a(0)=1, a(2)=2, (-14*n-n^3-7*n^2-8)*a(n)+(-2-n)*a(n+1)+a(n+3)-a(n+2)=0}, a(n), remember):

map(f, [$0..30]); # Robert Israel, Sep 25 2019

MATHEMATICA

With[{nn=20}, CoefficientList[Series[1/((1-x)(1-x^3)), {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Aug 25 2012 *)

CROSSREFS

Sequence in context: A347324 A333728 A354131 * A221663 A232663 A052591

Adjacent sequences: A052566 A052567 A052568 * A052570 A052571 A052572

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 09:50 EST 2022. Contains 358517 sequences. (Running on oeis4.)