OFFSET
0,1
LINKS
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 508
FORMULA
Recurrence: {a(1)=1, a(0)=2, (-2 - n^2 - 3*n)*a(n) + a(n+2) = 0}.
Sum((1/2)*(1 + 2*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1 + _Z^2))*n!.
E.g.f.: (x+2)/(1-x^2).
a(n) = 2n! if n is even, n! if odd.
From Amiram Eldar, Jul 06 2022: (Start)
Sum_{n>=0} 1/a(n) = sinh(1) + cosh(1)/2.
Sum_{n>=0} (-1)^(n+1)/a(n) = sinh(1) - cosh(1)/2. (End)
MAPLE
spec := [S, {S=Union(Sequence(Z), Sequence(Prod(Z, Z)))}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
a:=n->n!+sum((-1)^k*n!, k=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, Mar 25 2008
MATHEMATICA
a[n_] := If[OddQ[n], n!, 2*n!]; Array[a, 20, 0] (* Amiram Eldar, Jul 06 2022 *)
PROG
(PARI) a(n)=if(n<0, 0, n!*polcoeff((x+2)/(1-x^2)+x*O(x^n), n))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved