Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jul 06 2022 06:58:43
%S 2,1,4,6,48,120,1440,5040,80640,362880,7257600,39916800,958003200,
%T 6227020800,174356582400,1307674368000,41845579776000,355687428096000,
%U 12804747411456000,121645100408832000,4865804016353280000,51090942171709440000,2248001455555215360000
%N Expansion of e.g.f. (2 + x)/(1 - x^2).
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=508">Encyclopedia of Combinatorial Structures 508</a>
%F Recurrence: {a(1)=1, a(0)=2, (-2 - n^2 - 3*n)*a(n) + a(n+2) = 0}.
%F Sum((1/2)*(1 + 2*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1 + _Z^2))*n!.
%F E.g.f.: (x+2)/(1-x^2).
%F a(n) = 2n! if n is even, n! if odd.
%F From _Amiram Eldar_, Jul 06 2022: (Start)
%F Sum_{n>=0} 1/a(n) = sinh(1) + cosh(1)/2.
%F Sum_{n>=0} (-1)^(n+1)/a(n) = sinh(1) - cosh(1)/2. (End)
%p spec := [S,{S=Union(Sequence(Z), Sequence(Prod(Z,Z)))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
%p a:=n->n!+sum((-1)^k*n!, k=0..n): seq(a(n), n=0..19); # _Zerinvary Lajos_, Mar 25 2008
%t a[n_] := If[OddQ[n], n!, 2*n!]; Array[a, 20, 0] (* _Amiram Eldar_, Jul 06 2022 *)
%o (PARI) a(n)=if(n<0,0,n!*polcoeff((x+2)/(1-x^2)+x*O(x^n),n))
%Y Cf. A000142.
%K easy,nonn
%O 0,1
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000