OFFSET
0,3
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013
N. J. A. Sloane, Illustration of initial terms of A223092 and A064641
FORMULA
T(n,k) = T(n,k+1) + T(n-1,k+1) + T(n-1,k) + T(n-1,k-1). - Philippe Deléham, Mar 29 2013
EXAMPLE
Triangle begins:
[1]
[1, 2]
[1, 4, 7]
[1, 6, 18, 29]
[1, 8, 33, 86, 133]
[1, 10, 52, 179, 431, 650]
[1, 12, 75, 316, 978, 2238, 3319]
...
The T(n,k) array begins:
4: 0 0 0 0 1 10 ...
3: 0 0 0 1 8 52 ...
2: 0 0 1 6 33 179 ...
1: 0 1 4 18 86 431 ...
0: 1 2 7 29 133 650 ...
-------------------------
k/n:0 1 2 3 4 5 ...
T(5,2) = T(5,3) + T(4,3) + T(4,2) + T(4,1) = 52 + 8 + 33 + 86 = 179.- Philippe Deléham, Mar 29 2013
This is also Dziemianczuk's array N(-i,i+j) read by antidiagonals:
1,2,7,29,133,650,3319,17498, ...
1,4,18,86,431,2238,11941,65086, ...
1,6,33,179,978,5406,30241,171045, ...
1,8,52,316,1874,11020,64698,380400, ...
1,10,75,505,3235,20202,124455,761160, ...
... - N. J. A. Sloane, Dec 05 2013
MAPLE
T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
`if`(n<0 or k<0 or k>n, 0, add(T(n-l[1], k-l[2]),
l=[[1, 1], [1, 0], [1, -1], [0, -1]]) ))
end:
seq(seq(T(n, n-j), j=0..n), n=0..10); # Alois P. Heinz, Apr 08 2013
MATHEMATICA
max = 10; T[0, 0] = 1; T[n_ /; n >= 0, k_ /; 0 <= k <= max] := T[n, k] = T[n, k+1]+T[n-1, k+1]+T[n-1, k]+T[n-1, k-1]; T[n_, k_] = 0; Table[Table[T[n, k], {k, n, 0, -1}], {n, 0, max}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Philippe Deléham *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Mar 29 2013
STATUS
approved