The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064641 Unidirectional 'Delannoy' variation of the Boustrophedon transform applied to all 1's sequence: construct an array in which the first element of each row is 1 and subsequent entries are given by T(n,k) = T(n,k-1) + T(n-1,k-1) + T(n-1,k) + T(n-2,k-1). The last number in row n gives a(n). 11
 1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, 16487795, 94393105, 545337200, 3175320607, 18615098837, 109783526821, 650884962908, 3877184797783, 23193307022861, 139271612505361, 839192166392276 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also the number of paths from (0,0) to (n,n) not rising above y=x, using steps (1,0), (0,1), (1,1) and (2,1). For example, the 7 paths to (2,2) are dd, den, end, enen, Dn, eenn and edn, where e=(1,0), n=(0,1), d=(1,1) and D=(2,1). - Brian Drake, Aug 01 2007 For another interpretation as the number of walks of a certain type, see A223092 and the link below. - N. J. A. Sloane, Mar 29 2013 Hankel transform is 3^C(n+1,2). - Paul Barry, Jan 26 2009 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018. Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8. Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020. P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From N. J. A. Sloane, Sep 21 2012 Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953. M. Dziemianczuk, Counting Lattice Paths With Four Types of Steps, Graphs and Combinatorics, September 2013, Volume 30, Issue 6, pp 1427-1452. M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv preprint arXiv:1410.5747 [math.CO], 2014 N. J. A. Sloane, Illustration of initial terms of A223092 and A064641 D. V. Kruchinin, On solving some functional equations, Advances in Difference Equations (2015) 2015:17; DOI 10.1186/s13662-014-0347-9. FORMULA G.f.: (1-x-sqrt(1-6x-3x^2)) / (2x(1+x)) - Brian Drake, Aug 01 2007 G.f.: 1/(1-2x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-3x-3x^2/(1-.... (continued fraction). - Paul Barry, Jan 26 2009 a(n) = sum(i=0..n, binomial(n+i,n)*sum(j=0..n+1, binomial(j,-n+2*j-i-2)*binomial(n+1,j)))/(n+1); - Vladimir Kruchinin, May 12 2011 Recurrence: (n+1)*a(n) = (5*n-4)*a(n-1) + 9*(n-1)*a(n-2) + 3*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 13 2012 a(n) ~ 3*(sqrt(6)+sqrt(2))*(3+2*sqrt(3))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 13 2012 G.f.: 1 / (1 - x - (x+x^2) / (1 - x - (x+x^2) / ... )) (continued fraction). - Michael Somos, Mar 30 2014 0 = a(n)*(+9*a(n+1) + 54*a(n+2) + 33*a(n+3) - 12*a(n+4)) + a(n+1)*(+78*a(n+2) + 60*a(n+3) - 27*a(n+4)) + a(n+2)*(+36*a(n+2) + 34*a(n+3) - 14*a(n+4)) + a(n+3)*(+4*a(n+3) + a(n+4)) for all n >= 0. - Michael Somos, Nov 05 2014 Conjecture: (n+1)*a(n) +(-5*n+4)*a(n-1) +9*(-n+1)*a(n-2) +3*(-n+2)*a(n-3)=0. - R. J. Mathar, Oct 16 2017 EXAMPLE The array begins ......1 ....1...2 ..1...5...7 1...8...22..29 G.f. = 1 + 2*x + 7*x^3 + 29*x^4 + 133*x^5 + 650*x^6 + 3319*x^7 + ... MAPLE A:= series( (1-x-sqrt(1-6*x-3*x^2)) / (2*x*(1+x)), x, 21): seq(coeff(A, x, i), i=0..20); # Brian Drake, Aug 01 2007 MATHEMATICA Table[SeriesCoefficient[(1-x-Sqrt[1-6*x-3*x^2])/(2*x*(1+x)), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 13 2012 *) PROG (PARI) a(n)=if(n<0, 0, polcoeff(serreverse(x*(1-x)/(1+x+x^2)+O(x^(n+2))), n+1)) /* Paul Barry */ (Maxima) a(n):=sum(binomial(n+i, n)*sum(binomial(j, -n+2*j-i-2)*binomial(n+1, j), j, 0, n+1), i, 0, n)/(n+1); /* Vladimir Kruchinin, May 12 2011 */ CROSSREFS Delannoy numbers: A008288, table: A064642. Cf. A038764, A223092. Row sums of A201159. Sequence in context: A232971 A110576 A074600 * A183608 A307389 A104252 Adjacent sequences:  A064638 A064639 A064640 * A064642 A064643 A064644 KEYWORD nonn AUTHOR Floor van Lamoen, Oct 03 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 07:44 EST 2020. Contains 338702 sequences. (Running on oeis4.)