login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A183608
G.f.: A(x) = Sum_{n>=0} x^n * C(x)^(n^2), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
0
1, 1, 2, 7, 29, 133, 658, 3471, 19400, 114417, 709815, 4619048, 31446579, 223419752, 1652599036, 12698380493, 101151995810, 833740791381, 7098646227614, 62335051895044, 563749889969108, 5244173616702347, 50117689766439784
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n-1} binomial((n-k)^2+2k, k) * (n-k)^2/((n-k)^2 + 2k) for n>0 with a(0)=1.
G.f.: A(x) = Sum_{n>=0} x^n*C(x)^n*Product_{k=1..n} (1-x*C(x)^(4*k-3))/(1-x*C(x)^(4*k-1)) where C(x) = 1 + x*C(x)^2.
Let q = C(x) = 1 + x*C(x)^2, then g.f. A(x) equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
G.f.: A(x) = 1 + x*C(x)* G( x*C(x)^2 ), where G(x) = Sum_{k>=0} x^k*(1+x)^(k^2) is the g.f. of A121689.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 29*x^4 + 133*x^5 + 658*x^6 +...
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[(n-k)^2+2*k, k] * (n-k)^2/((n-k)^2 + 2*k), {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) {a(n)=if(n<0, 0, 0^n+sum(k=0, n-1, binomial((n-k)^2+2*k, k)*(n-k)^2/((n-k)^2+2*k)))}
CROSSREFS
Sequence in context: A110576 A074600 A064641 * A307389 A104252 A373802
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 15 2011
STATUS
approved