login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121689
G.f.: Sum_{n>=0} x^n * (1+x)^(n^2).
10
1, 1, 2, 5, 16, 57, 231, 1023, 4926, 25483, 140601, 822422, 5074015, 32881868, 223027542, 1578435549, 11625317128, 88894615929, 704269188135, 5770209550496, 48810504348082, 425650324975153, 3821377057170313
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} C(k^2,n-k).
From Paul D. Hanna, Apr 24 2010: (Start)
Let q = (1+x), then g.f. A(x) equals the continued fraction:
A(x) = 1/(1- q*x/(1- (q^3-q)*x/(1- q^5*x/(1- (q^7-q^3)*x/(1- q^9*x/(1- (q^11-q^5)*x/(1- q^13*x/(1- (q^15-q^7)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
(End)
G.f.: Sum_{n>=0} x^n * (1+x)^n * Product_{k=1..n} (1 - x*(1+x)^(4*k-3)) / (1 - x*(1+x)^(4*k-1)) due to a q-series identity. - Paul D. Hanna, May 08 2010
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 16*x^4 + 57*x^5 + 231*x^6 + ...
where
A(x) = 1 + x*(1+x) + x^2*(1+x)^4 + x^3*(1+x)^9 + x^4*(1+x)^16 + x^5*(1+x)^25 + x^6*(1+x)^36 + x^7*(1+x)^49 + x^8*(1+x)^64 + ... + x^n*(1+x)^(n^2) + ...
MATHEMATICA
Table[Sum[Binomial[k^2, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 06 2014 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(k^2, n-k))
(PARI) {a(n)=polcoeff(sum(m=0, n, x^m*(1+x)^m*prod(k=1, m, (1-x*(1+x)^(4*k-3))/(1-x*(1+x)^(4*k-1) + x*O(x^n)))), n)} \\ Paul D. Hanna, May 08 2010
CROSSREFS
Cf. A217285.
Sequence in context: A188314 A114296 A378382 * A357580 A192635 A009225
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 15 2006
STATUS
approved