The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A188314 Expansion of (1/(1-x))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108. 4
 1, 2, 5, 16, 57, 219, 883, 3687, 15803, 69128, 307363, 1385003, 6310869, 29028616, 134610771, 628612921, 2953640371, 13953726888, 66240021987, 315812059436, 1511569447859, 7260364084997, 34984937594741, 169073568381936, 819288294835939, 3979892232651125, 19377475499900015 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Hankel transform is the (25,-29) Somos-4 sequence A188315. Image of the Catalan numbers by A060098. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1400 FORMULA G.f.: (1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x). G.f.: (1+x)/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction). a(n) = Sum{k=0..n, A000108(k)*Sum{i=0..floor(n/2), C(n-2i,n-2i-k)*C(k+i-1,i)}}. Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(42-26*n)*a(n-2) +30*(3-n)*a(n-3) +(n-5)*a(n-4) +5*(n-6)*a(n-5)=0. - R. J. Mathar, Nov 15 2011 G.f. A(x) satisfies: A(x) = 1 + x * (1 + x*A(x) + A(x)^2). - Ilya Gutkovskiy, Jul 01 2020 MATHEMATICA CoefficientList[Series[(1-x^2 - Sqrt[1-4*x-6*x^2+x^4])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *) PROG (PARI) x='x+O('x^30); Vec((1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x)) \\ G. C. Greubel, Aug 14 2018 (Magma) m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^2- Sqrt(1-4*x-6*x^2+x^4))/(2*x))); // G. C. Greubel, Aug 14 2018 CROSSREFS Cf. A000108, A188312. Sequence in context: A072110 A323229 A197158 * A114296 A121689 A357580 Adjacent sequences: A188311 A188312 A188313 * A188315 A188316 A188317 KEYWORD nonn,easy AUTHOR Paul Barry, Mar 28 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 06:28 EDT 2024. Contains 372772 sequences. (Running on oeis4.)