login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188314
Expansion of (1/(1-x))*c(x/((1-x)*(1-x^2))) where c(x) is the g.f. of A000108.
4
1, 2, 5, 16, 57, 219, 883, 3687, 15803, 69128, 307363, 1385003, 6310869, 29028616, 134610771, 628612921, 2953640371, 13953726888, 66240021987, 315812059436, 1511569447859, 7260364084997, 34984937594741, 169073568381936, 819288294835939, 3979892232651125, 19377475499900015
OFFSET
0,2
COMMENTS
Hankel transform is the (25,-29) Somos-4 sequence A188315. Image of the Catalan numbers by A060098.
LINKS
FORMULA
G.f.: (1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x).
G.f.: (1+x)/(1-x^2-x/(1-x-x/(1-x^2-x/(1-x-x/(1-...))))) (continued fraction).
a(n) = Sum{k=0..n, A000108(k)*Sum{i=0..floor(n/2), C(n-2i,n-2i-k)*C(k+i-1,i)}}.
Conjecture: (n+1)*a(n) +(n+2)*a(n-1) +(42-26*n)*a(n-2) +30*(3-n)*a(n-3) +(n-5)*a(n-4) +5*(n-6)*a(n-5)=0. - R. J. Mathar, Nov 15 2011
G.f. A(x) satisfies: A(x) = 1 + x * (1 + x*A(x) + A(x)^2). - Ilya Gutkovskiy, Jul 01 2020
MATHEMATICA
CoefficientList[Series[(1-x^2 - Sqrt[1-4*x-6*x^2+x^4])/(2*x), {x, 0, 50}], x] (* G. C. Greubel, Aug 14 2018 *)
PROG
(PARI) x='x+O('x^30); Vec((1-x^2- sqrt(1-4*x-6*x^2+x^4))/(2*x)) \\ G. C. Greubel, Aug 14 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^2- Sqrt(1-4*x-6*x^2+x^4))/(2*x))); // G. C. Greubel, Aug 14 2018
CROSSREFS
Sequence in context: A072110 A323229 A197158 * A114296 A378382 A121689
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 28 2011
STATUS
approved