The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A072110 a(n) = 4*a(n-1) - a(n-2) - 2, with a(0)=1, a(1)=2. 3
 1, 2, 5, 16, 57, 210, 781, 2912, 10865, 40546, 151317, 564720, 2107561, 7865522, 29354525, 109552576, 408855777, 1525870530, 5694626341, 21252634832, 79315912985, 296011017106, 1104728155437, 4122901604640, 15386878263121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-5,1). FORMULA a(n) = A071954(n)/2 = A001353(n) + 1. From G. C. Greubel, Feb 25 2019: (Start) G.f.: (1-3*x)/((1-x)*(1-4*x+x^2)) a(n) = 5*a(n-1) - 5*a(n-2) + a(n-3). a(n) = 1 - (-i)^(n+1)*F(n, 4*i), where i = sqrt(-1) and F(n,x) is the Fibonacci polynomial. (End) MATHEMATICA a[0]=1; a[1]=2; a[n_]:=a[n] =4*a[n-1]-a[n-2] -2; Table[a[n], {n, 0, 25}] LinearRecurrence[{5, -5, 1}, {1, 2, 5}, 30] (* G. C. Greubel, Feb 25 2019 *) PROG (Sage) [lucas_number1(n, 4, 1)+1 for n in range(26)] # Zerinvary Lajos, Jul 06 2008 (Sage) ((1-3*x)/((1-x)*(1-4*x+x^2))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 25 2019 (PARI) my(x='x+O('x^30)); Vec((1-3*x)/((1-x)*(1-4*x+x^2))) \\ G. C. Greubel, Feb 25 2019 (Magma) I:=[1, 2, 5]; [n le 3 select I[n] else 5*Self(n-1) -5*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Feb 25 2019 (GAP) a:=[1, 2, 5];; for n in [4..30] do a[n]:=5*a[n-1]-5*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Feb 25 2019 CROSSREFS Cf. A001353, A071954. Sequence in context: A082789 A234278 A180678 * A323229 A197158 A188314 Adjacent sequences: A072107 A072108 A072109 * A072111 A072112 A072113 KEYWORD nonn AUTHOR Robert G. Wilson v, Jul 30 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 21:28 EDT 2023. Contains 365531 sequences. (Running on oeis4.)