|
|
A072113
|
|
Continued fraction expansion of Hall and Tenenbaum constant.
|
|
1
|
|
|
0, 3, 23, 1, 1, 16, 1, 2, 1, 8, 1, 274, 3, 1, 5, 1, 2, 1, 16, 1, 3, 3, 2, 1, 4, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 16, 3, 3, 2, 1, 1, 1, 2, 69, 121, 1, 5, 1, 2, 1, 2, 1, 1, 1, 2, 1, 12, 4, 1, 1, 1, 1, 2, 1, 2, 3, 3, 1, 3, 2, 4, 1, 7, 1, 16, 2, 4, 1, 2, 7, 2, 3, 1, 3, 2, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality ( Hall and Tenenbaum, 1991).
|
|
REFERENCES
|
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.
|
|
LINKS
|
Table of n, a(n) for n=1..98.
|
|
FORMULA
|
K = cos(S) = 0.3287... where S it the root 0< S < 2Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.
|
|
PROG
|
(PARI) \p200;
contfrac(cos(solve(X=0, 2*Pi, sin(X)+(Pi-X)*cos(X)-Pi/2)))
|
|
CROSSREFS
|
Cf. A072112.
Sequence in context: A232016 A132558 A358288 * A105433 A196086 A196083
Adjacent sequences: A072110 A072111 A072112 * A072114 A072115 A072116
|
|
KEYWORD
|
base,cofr,easy,nonn
|
|
AUTHOR
|
Benoit Cloitre, Jun 19 2002
|
|
STATUS
|
approved
|
|
|
|