OFFSET
0,13
COMMENTS
Number of k <= n such that bigomega(k) = 3.
Let A be a positive integer then card{ x <= n : bigomega(x) = A } ~ (n/Log(n))*Log(Log(n))^(A-1)/(A-1)!. For which n, card{ x <= n : bigomega(x) = 3 } >= card{ x <= n : bigomega(x) = 2 } ?
15530 is the first number for which there are more 3-almost primes than 2-almost primes. See A125149.
REFERENCES
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974).
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
FORMULA
a(n) = card{ x <= n : bigomega(x) = 3 }, asymptotically : a(n) ~ (n/log(n))*log(log(n))^2/2 [Landau, p. 211].
MATHEMATICA
Table[Sum[KroneckerDelta[PrimeOmega[i], 3], {i, n}], {n, 0, 50}] (* Wesley Ivan Hurt, Oct 07 2014 *)
PROG
(PARI) for(n=1, 100, print1(sum(i=1, n, bigomega(i)==3), ", "))
(PARI) a(n)=my(j, s); forprime(p=2, (n+.5)^(1/3), j=primepi(p)-2; forprime(q=p, sqrtint(n\p), s+=primepi(n\(p*q))-j++)); s \\ Charles R Greathouse IV, Mar 21 2012
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A072114(n): return int(sum(primepi(n//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(n, 3)[0]+1)) for b, m in enumerate(primerange(k, isqrt(n//k)+1), a))) # Chai Wah Wu, Aug 17 2024
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
STATUS
approved