login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072114
Number of 3-almost primes (A014612) <= n.
6
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19
OFFSET
0,13
COMMENTS
Number of k <= n such that bigomega(k) = 3.
Let A be a positive integer then card{ x <= n : bigomega(x) = A } ~ (n/Log(n))*Log(Log(n))^(A-1)/(A-1)!. For which n, card{ x <= n : bigomega(x) = 3 } >= card{ x <= n : bigomega(x) = 2 } ?
15530 is the first number for which there are more 3-almost primes than 2-almost primes. See A125149.
REFERENCES
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974).
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
FORMULA
a(n) = card{ x <= n : bigomega(x) = 3 }, asymptotically : a(n) ~ (n/log(n))*log(log(n))^2/2 [Landau, p. 211].
MATHEMATICA
Table[Sum[KroneckerDelta[PrimeOmega[i], 3], {i, n}], {n, 0, 50}] (* Wesley Ivan Hurt, Oct 07 2014 *)
PROG
(PARI) for(n=1, 100, print1(sum(i=1, n, bigomega(i)==3), ", "))
(PARI) a(n)=my(j, s); forprime(p=2, (n+.5)^(1/3), j=primepi(p)-2; forprime(q=p, sqrtint(n\p), s+=primepi(n\(p*q))-j++)); s \\ Charles R Greathouse IV, Mar 21 2012
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A072114(n): return int(sum(primepi(n//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(n, 3)[0]+1)) for b, m in enumerate(primerange(k, isqrt(n//k)+1), a))) # Chai Wah Wu, Aug 17 2024
CROSSREFS
Partial sums of A101605.
Cf. A125149.
Sequence in context: A210528 A120450 A127238 * A090621 A173711 A236678
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
STATUS
approved