|
|
A072114
|
|
Number of 3-almost primes (A014612) <= n.
|
|
6
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 10, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 19, 19, 19, 19, 19, 19, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,13
|
|
COMMENTS
|
Number of k <= n such that bigomega(k) = 3.
Let A be a positive integer then card{ x <= n : bigomega(x) = A } ~ (n/Log(n))*Log(Log(n))^(A-1)/(A-1)!. For which n, card{ x <= n : bigomega(x) = 3 } >= card{ x <= n : bigomega(x) = 2 } ?
15530 is the first number for which there are more 3-almost primes than 2-almost primes. See A125149.
|
|
REFERENCES
|
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1, Teubner, Leipzig; third edition : Chelsea, New York (1974).
G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.
|
|
LINKS
|
E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 1 and vol. 2, Leipzig, Berlin, B. G. Teubner, 1909.
|
|
FORMULA
|
a(n) = card{ x <= n : bigomega(x) = 3 }, asymptotically : a(n) ~ (n/log(n))*log(log(n))^2/2 [Landau, p. 211].
|
|
MATHEMATICA
|
Table[Sum[KroneckerDelta[PrimeOmega[i], 3], {i, n}], {n, 0, 50}] (* Wesley Ivan Hurt, Oct 07 2014 *)
|
|
PROG
|
(PARI) for(n=1, 100, print1(sum(i=1, n, bigomega(i)==3), ", "))
(PARI) a(n)=my(j, s); forprime(p=2, (n+.5)^(1/3), j=primepi(p)-2; forprime(q=p, sqrtint(n\p), s+=primepi(n\(p*q))-j++)); s \\ Charles R Greathouse IV, Mar 21 2012
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|