|
|
A072115
|
|
Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x.
|
|
0
|
|
|
0, 3, 2, 1, 1, 1, 2, 1, 7, 14, 1, 2, 10, 1, 5, 3, 1, 7, 2, 1, 2, 2, 2, 4, 1, 1, 12, 1, 1, 1, 14, 2, 10, 3, 5, 6, 2, 1, 6, 13, 1, 2, 2, 4, 8, 1, 4, 8, 2, 1, 16, 1, 1, 1, 1, 4, 2, 1, 1, 1, 3, 13, 4, 1, 2, 1, 6, 1, 1, 2, 43, 1, 3, 1, 1, 2, 2, 2, 1, 2, 2, 2, 10, 5, 4, 8, 1, 5, 3, 2, 1, 1, 3, 2, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Start from any complex number z=x+iy, not solution to zeta(z)=z, iterate the zeta function on z. If zeta_m(z) (=zeta(zeta(....(z)..)) m times) has a limit when m grows, then this limit seems to always be the real number : C=-0.2959050055752....Example: if z=3+5I after 30 iterations : zeta_30(z)=-0.29590556499...-0.00000041029065...*I
|
|
LINKS
|
|
|
PROG
|
(PARI) \p150 contfrac(abs(solve(X=-1, 0, zeta(X)-X)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,cofr,easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|