login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A072115 Continued fraction expansion of abs(C) where C=-0.2959050055752...is the real negative solution to zeta(x)=x. 0
0, 3, 2, 1, 1, 1, 2, 1, 7, 14, 1, 2, 10, 1, 5, 3, 1, 7, 2, 1, 2, 2, 2, 4, 1, 1, 12, 1, 1, 1, 14, 2, 10, 3, 5, 6, 2, 1, 6, 13, 1, 2, 2, 4, 8, 1, 4, 8, 2, 1, 16, 1, 1, 1, 1, 4, 2, 1, 1, 1, 3, 13, 4, 1, 2, 1, 6, 1, 1, 2, 43, 1, 3, 1, 1, 2, 2, 2, 1, 2, 2, 2, 10, 5, 4, 8, 1, 5, 3, 2, 1, 1, 3, 2, 19 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Start from any complex number z=x+iy, not solution to zeta(z)=z, iterate the zeta function on z. If zeta_m(z) (=zeta(zeta(....(z)..)) m times) has a limit when m grows, then this limit seems to always be the real number : C=-0.2959050055752....Example: if z=3+5I after 30 iterations : zeta_30(z)=-0.29590556499...-0.00000041029065...*I
LINKS
PROG
(PARI) \p150 contfrac(abs(solve(X=-1, 0, zeta(X)-X)))
CROSSREFS
Cf. A069857.
Sequence in context: A073572 A073356 A093032 * A210650 A218754 A079948
KEYWORD
base,cofr,easy,nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 20:24 EDT 2023. Contains 363078 sequences. (Running on oeis4.)