OFFSET
1,6
COMMENTS
It seems that every prime p > 3 can be expressed as 2*p1 + 3*p2, where p1, p2 are primes or 1. I have tested it for the first 1500 primes (up to 12553) and it is true.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000
EXAMPLE
a(11)=2 because we can write prime(11)=31 as 2*5 + 3*7 OR 2*11 + 3*3.
a(12)=3 because we can write prime(12)=37 as 2*2 + 3*11 OR 2*11 + 3*5 OR 2*17 + 3*1.
PROG
(Python)
from collections import Counter
from sympy import prime, primerange
def aupton(nn):
primes, c = list(primerange(2, prime(nn)+1)), Counter()
p2, p3 = [2] + [2*p for p in primes], [3] + [3*p for p in primes]
for p in p2:
if p > primes[-1]: break
for q in p3:
if p + q > primes[-1]: break
c[p+q] += 1
return [c[p] for p in primes]
print(aupton(83)) # Michael S. Branicky, Dec 21 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vassilis Papadimitriou, Jul 20 2006
EXTENSIONS
a(59) and beyond from Michael S. Branicky, Dec 21 2022
STATUS
approved