login
A120453
Numbers such that 2*UnitaryPhi(2*UnitaryPhi(n)) = n.
0
2, 4, 6, 12, 16, 30, 48, 60, 168, 240, 256, 510, 768, 1020, 3840, 4080, 14880, 65280, 65536, 131070, 196608, 262140, 983040, 1048560, 16711680, 16776960, 4294901760, 4294967296, 7608944640, 8589934590, 12884901888, 17179869180
OFFSET
1,1
COMMENTS
Numbers of the form 2^(2^m), 1 <= m <= 5 are terms.
Numbers of the form Product_{i=0..m} (F_i + 1), 0 <= m <= 4, where F_i is Fermat prime 2^(2^i) + 1 are also terms.
a(33) > 2^35. - Donovan Johnson, May 06 2013
MAPLE
A047994 := proc(n) p := ifactors(n)[2] ; mul(op(1, op(i, p))^op(2, op(i, p))-1, i=1..nops(p)) ; end proc:
for m from 2 by 2 do if 2*A047994(2*A047994(m)) = m then print(m); end if; end do:
CROSSREFS
Sequence in context: A220219 A284456 A233968 * A326438 A023995 A018189
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Jul 20 2006
EXTENSIONS
a(21)-a(32) from Donovan Johnson, May 06 2013
STATUS
approved