

A120456


Antidiagonal triangular version of the modulo 15 prime multiplication table past n=3.


0



1, 2, 2, 4, 4, 4, 7, 8, 8, 7, 8, 14, 1, 14, 8, 11, 1, 13, 13, 1, 11, 13, 7, 2, 4, 2, 7, 13, 14, 11, 14, 11, 11, 14, 11, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This modulo 15 of prime digit endings is important because it gives even odd prime types that appear in pairs: {1,4},{2,13},{7,8},{11,14}


LINKS

Table of n, a(n) for n=0..35.


FORMULA

b[n]={1, 2, 4, 7, 8, 11, 13, 14} T[n,m]=Mod[b[n]*b[m],15] a(n) = T[n,m]: antidiagonal form


EXAMPLE

Array looks like:
1, 2, 4, 7, 8, 11, 13, 14
2, 4, 8, 14, 1, 7, 11, 13
4, 8, 1, 13, 2, 14, 7, 11
7, 14, 13, 4, 11, 2, 1, 8
8, 1, 2, 11, 4, 13, 14, 7
11, 7, 14, 2, 13, 1, 8, 4
13, 11, 7, 1, 14, 8, 4, 2
14, 13, 11, 8, 7, 4, 2, 1


MATHEMATICA

Table[Mod[Prime[n], 15], {n, 1, 50}] a = {1, 2, 4, 7, 8, 11, 13, 14} b = Table[Mod[a[[n]]*a[[m]], 15], {n, 1, 8}, {m, 1, 8}] c = Table[Table[b[[n, l  n]], {n, 1, l  1}], {l, 1, Dimensions[b][[1]] + 1}] Flatten[c]


CROSSREFS

Sequence in context: A062570 A108514 A317419 * A115383 A219156 A210036
Adjacent sequences: A120453 A120454 A120455 * A120457 A120458 A120459


KEYWORD

nonn,tabf,fini


AUTHOR

Roger L. Bagula, Jun 23 2006


STATUS

approved



