OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} mu(14 * k) * x^k / (1 - x^k)^2, where mu() is the Moebius function (A008683).
Multiplicative with a(p^e) = p^e if p = 2 or 7, and (p-1)*p^(e-1) otherwise.
Sum_{k=1..n} a(k) ~ (49/(12*Pi^2)) * n^2. - Amiram Eldar, May 10 2024
MATHEMATICA
a[n_] := EulerPhi[14 * n]/6; Array[a, 100] (* Amiram Eldar, May 10 2024 *)
PROG
(PARI) a(n) = eulerphi(14*n)/6;
(PARI) my(N=80, x='x+O('x^N)); Vec(sum(k=1, N, moebius(14*k)*x^k/(1-x^k)^2))
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Seiichi Manyama, May 10 2024
STATUS
approved