Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jul 06 2024 10:25:25
%S 0,3,23,1,1,16,1,2,1,8,1,274,3,1,5,1,2,1,16,1,3,3,2,1,4,1,1,2,1,2,1,2,
%T 1,1,2,16,3,3,2,1,1,1,2,69,121,1,5,1,2,1,2,1,1,1,2,1,12,4,1,1,1,1,2,1,
%U 2,3,3,1,3,2,4,1,7,1,16,2,4,1,2,7,2,3,1,3,2,1,1,1,1,2,1,1,3,1,1,3,2,1
%N Continued fraction expansion of Hall and Tenenbaum constant.
%C For any multiplicative function g with values -1<= g(k) <= 1, for any real x >=2, Sum( i<= x, g(i) ) << x * exp{ -K * Sum( p<=x, (1-g(p))/p ) } and K is the optimal constant satisfying this inequality ( Hall and Tenenbaum, 1991).
%D G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 348, Publications de l'Institut Cartan, 1990.
%F K = cos(S) = 0.3287... where S it the root 0< S < 2Pi of sin(S)+(Pi-S)*cos(S) = Pi/2.
%o (PARI) \p200;
%o contfrac(cos(solve(X=0,2*Pi,sin(X)+(Pi-X)*cos(X)-Pi/2)))
%Y Cf. A072112 (decimal expansion).
%K base,cofr,easy,nonn
%O 0,2
%A _Benoit Cloitre_, Jun 19 2002
%E Offset changed by _Andrew Howroyd_, Jul 06 2024