login
A072109
Numbers k such that Sum_{i=1..k} gcd(k,i) divides Sum_{i=1..k} lcm(k,i).
2
1, 4, 36, 125, 469, 536, 882, 1156, 8532, 8775, 25012, 32000, 34749, 36324, 37179, 61952, 147456, 405224, 451584, 644304, 954084, 1185921, 1560546, 1562500, 1982464, 3080025, 5229378, 5784025, 6138868, 9231327, 12806144, 22108500, 25509168, 25562264, 29762208, 40894464, 45001899, 47397636, 49242375
OFFSET
1,2
LINKS
FORMULA
Numbers k such that A018804(k) divides A051193(k).
MAPLE
with(numtheory): for n from 1 to 10^6 do a := divisors(n): s1 := add(a[m]*phi(a[m]), m=1..nops(a)): s2 := add(phi(a[m])/a[m], m=1..nops(a)): if type((s1+1)/(2*s2), integer) then printf(`%d, `, n); fi: od:
MATHEMATICA
f[n_] := (k = n; While[ !IntegerQ[ Sum[ LCM[k, i], {i, 1, k}] / Sum[ GCD[k, i], {i, 1, k}]], k++ ]; k); j = 1; Do[ m = f[j]; Print[m]; j = m + 1, {n, 1, 9}]
f1[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); f2[p_, e_] := e*(p - 1)/p + 1; q[n_] := IntegerQ[(1 + Times @@ f1 @@@ (fct = FactorInteger[n]))/(2 * Times @@ f2 @@@ fct)]; Select[Range[10^5], q] (* Amiram Eldar, May 02 2023 *)
PROG
(PARI) for(n=1, 1156, if(sum(i=1, n, lcm(n, i))%sum(i=1, n, gcd(n, i))==0, print1(n, ", ")))
(PARI) is(n) = {my(f = factor(n)); (1 + prod(i = 1, #f~, (f[i, 1]^(2*f[i, 2] + 1) + 1)/(f[i, 1] + 1))) % (2*prod(i = 1, #f~, (f[i, 2]*(f[i, 1] - 1)/f[i, 1] + 1))) == 0; } \\ Amiram Eldar, May 02 2023
CROSSREFS
Sequence in context: A362751 A076830 A144298 * A045490 A318150 A275133
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jun 19 2002
EXTENSIONS
Edited by Robert G. Wilson v, Jun 22 2002
More terms from Vladeta Jovovic, Jun 22 2002
More terms from Sean A. Irvine, Feb 01 2011
Corrected definition - Richard L. Ollerton, May 06 2021
STATUS
approved