|
|
A072109
|
|
Numbers k such that Sum_{i=1..k} gcd(k,i) divides Sum_{i=1..k} lcm(k,i).
|
|
2
|
|
|
1, 4, 36, 125, 469, 536, 882, 1156, 8532, 8775, 25012, 32000, 34749, 36324, 37179, 61952, 147456, 405224, 451584, 644304, 954084, 1185921, 1560546, 1562500, 1982464, 3080025, 5229378, 5784025, 6138868, 9231327, 12806144, 22108500, 25509168, 25562264, 29762208, 40894464, 45001899, 47397636, 49242375
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
with(numtheory): for n from 1 to 10^6 do a := divisors(n): s1 := add(a[m]*phi(a[m]), m=1..nops(a)): s2 := add(phi(a[m])/a[m], m=1..nops(a)): if type((s1+1)/(2*s2), integer) then printf(`%d, `, n); fi: od:
|
|
MATHEMATICA
|
f[n_] := (k = n; While[ !IntegerQ[ Sum[ LCM[k, i], {i, 1, k}] / Sum[ GCD[k, i], {i, 1, k}]], k++ ]; k); j = 1; Do[ m = f[j]; Print[m]; j = m + 1, {n, 1, 9}]
f1[p_, e_] := (p^(2*e + 1) + 1)/(p + 1); f2[p_, e_] := e*(p - 1)/p + 1; q[n_] := IntegerQ[(1 + Times @@ f1 @@@ (fct = FactorInteger[n]))/(2 * Times @@ f2 @@@ fct)]; Select[Range[10^5], q] (* Amiram Eldar, May 02 2023 *)
|
|
PROG
|
(PARI) for(n=1, 1156, if(sum(i=1, n, lcm(n, i))%sum(i=1, n, gcd(n, i))==0, print1(n, ", ")))
(PARI) is(n) = {my(f = factor(n)); (1 + prod(i = 1, #f~, (f[i, 1]^(2*f[i, 2] + 1) + 1)/(f[i, 1] + 1))) % (2*prod(i = 1, #f~, (f[i, 2]*(f[i, 1] - 1)/f[i, 1] + 1))) == 0; } \\ Amiram Eldar, May 02 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|