login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121688
G.f.: Sum_{n>=0} x^n * (1+x)^(2^n).
2
1, 2, 3, 6, 15, 49, 210, 1191, 8981, 90405, 1219297, 22105506, 540476679, 17875316557, 802011318369, 48947781204529, 4073596070782653, 463360670014324153, 72183972733773232361, 15430254274957714069057
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(2^k,n-k).
Lim_{n->infinity} a(n)^(1/n^2) = 2^(1/4). - Vaclav Kotesovec, Oct 05 2020
G.f.: Sum_{n>=0} ( log(1 + x)^n / n! ) / (1 - 2^n*x). - Paul D. Hanna, Jan 23 2021
MAPLE
A121688:= n-> add(binomial(2^k, n-k), k=0..n); seq(A121688(n), n=0..20); # G. C. Greubel, Mar 15 2021
MATHEMATICA
Table[Sum[Binomial[2^k, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 05 2020 *)
PROG
(PARI) a(n)=sum(k=0, n, binomial(2^k, n-k))
(Sage) [sum(binomial(2^k, n-k) for k in (0..n)) for n in (0..20)] # G. C. Greubel, Mar 15 2021
(Magma) [(&+[Binomial(2^k, n-k): k in [0..n]]): n in [0..20]]; // G. C. Greubel, Mar 15 2021
CROSSREFS
Cf. A136501.
Sequence in context: A322197 A368954 A216144 * A082094 A320963 A061059
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 15 2006
STATUS
approved