login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320963
a(n) = Sum_{j=0..n} Sum_{k=0..j} abs( Stirling1(j - k, k) ).
2
1, 1, 2, 3, 6, 15, 51, 227, 1257, 8296, 63394, 549740, 5330185, 57117590, 670163058, 8543228103, 117564576721, 1736762231296, 27411856376831, 460320540171210, 8194312180092795, 154127845115561811, 3054239953905841713, 63597989583700047353, 1388275729125313815336
OFFSET
0,3
LINKS
MAPLE
a := n -> add(add(abs(Stirling1(j - k, k)), k=0..j), j=0..n):
seq(a(n), n=0..29);
MATHEMATICA
a[n_] := Sum[Sum[Abs[StirlingS1[j - k, k]], {k, 0, j}], {j, 0, n}];
Array[a, 25, 0] (* Amiram Eldar, Nov 06 2018 *)
PROG
(PARI) a(n)={sum(j=0, n, sum(k=0, j, abs(stirling(j-k, k, 1))))} \\ Andrew Howroyd, Nov 06 2018
CROSSREFS
The Stirling_2 counterpart: A320964.
Sequence in context: A216144 A121688 A082094 * A061059 A060796 A059842
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 06 2018
STATUS
approved