login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320961
The exponential limit of (-x)!, rounded to the nearest integer.
0
1, 1, 4, 27, 353, 6128, 145159, 4402407, 166608593, 7666343436, 420646243820, 27079750092637, 2018074017351900, 172131994564410026, 16641769389384512884, 1808431867178308597550, 219272140061011055068448, 29473880023661693302772550, 4366902281695075479226089449
OFFSET
0,3
COMMENTS
The exponential limit of a function is defined in A320956. Applied to (-x)! Maple returns a sequence of sums of Zeta values, powers of Pi, powers of Euler's gamma, etc.. The sequence starts: 1, gamma, (1/3)*Pi^2 + 2* gamma^2, 10*Zeta(3) + (5/2)*Pi^2*gamma + 5*gamma^3, ... These sums, rounded to the nearest integer, give the sequence.
MAPLE
explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
explim(18, x -> (-x)!): map(round, [evalf(%, 46)]);
MATHEMATICA
m = 19; CoefficientList[(-x)!+O[x]^m, x]*Range[0, m-1]!*BellB[Range[0, m-1]] // Round (* Jean-François Alcover, Jul 21 2019 *)
CROSSREFS
The exponential limit of other functions: A320955 (exp), A320962 (log(x+1)), A320958 (arcsin), A320959 (arctanh).
Sequence in context: A221411 A304654 A203202 * A239726 A058155 A334527
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 07 2018
STATUS
approved