|
|
A320961
|
|
The exponential limit of (-x)!, rounded to the nearest integer.
|
|
0
|
|
|
1, 1, 4, 27, 353, 6128, 145159, 4402407, 166608593, 7666343436, 420646243820, 27079750092637, 2018074017351900, 172131994564410026, 16641769389384512884, 1808431867178308597550, 219272140061011055068448, 29473880023661693302772550, 4366902281695075479226089449
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The exponential limit of a function is defined in A320956. Applied to (-x)! Maple returns a sequence of sums of Zeta values, powers of Pi, powers of Euler's gamma, etc.. The sequence starts: 1, gamma, (1/3)*Pi^2 + 2* gamma^2, 10*Zeta(3) + (5/2)*Pi^2*gamma + 5*gamma^3, ... These sums, rounded to the nearest integer, give the sequence.
|
|
LINKS
|
|
|
MAPLE
|
explim := (len, f) -> seq(combinat:-bell(n)*((D@@n)(f))(0), n=0..len):
explim(18, x -> (-x)!): map(round, [evalf(%, 46)]);
|
|
MATHEMATICA
|
m = 19; CoefficientList[(-x)!+O[x]^m, x]*Range[0, m-1]!*BellB[Range[0, m-1]] // Round (* Jean-François Alcover, Jul 21 2019 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|