|
|
A239726
|
|
Numbers n such that sigma(n) - n = sigma(n') - n', where n' is the arithmetic derivative of n.
|
|
1
|
|
|
1, 4, 27, 369, 2120, 2853, 3125, 6620, 24932, 65588, 210404, 245444, 347049, 823543, 833444, 968204, 1610684, 3125492, 5046044, 5856308, 9339020, 9900236, 10614092, 10636772, 11421164, 11617772, 13276892, 16116764, 16244156, 18422444, 21073916, 21656564
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
A051674 is a subset of this sequence.
|
|
LINKS
|
|
|
EXAMPLE
|
Arithmetic derivative of 369 is 255, sigma(369) = 546, sigma(255) = 432 and 546 - 369 = 432 - 255 = 177.
|
|
MAPLE
|
with(numtheory); P:=proc(q) local a, n, p;
for n from 1 to q do a:=n*add(op(2, p)/op(1, p), p=ifactors(n)[2]);
if sigma(a)-a=sigma(n)-n then print(n); fi;
od; end: P(10^9);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|