login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216144
Square root of smallest square greater than the product of first n primes.
3
2, 3, 6, 15, 49, 174, 715, 3115, 14937, 80435, 447840, 2724104, 17442772, 114379900, 784149082, 5708691486, 43849291331, 342473913400, 2803269796342, 23620771158595, 201815957246322, 1793779464521956, 16342108667160302, 154171144824008980, 1518409682511777987
OFFSET
1,1
COMMENTS
Known values such that a(n)=A145781(n) are a(n)=2,3,6,15 and 715, i.e. for primes p=2,3,5,7 and 17.
(The relation a(n)=A145781(n) means that a(n)(a(n)-1) is a primorial number.) - M. F. Hasler, Sep 02 2012, - corrected by Jonathan Sondow, Sep 02 2012
LINKS
C. Aebi and G. Cairns, Partitions of primes, Parabola 45, Issue 1 (2009); see the table on p. 5.
FORMULA
a(n)=sqrt(A002110(n) + A145781(n)).
a(n)=A060797(n)+1. - M. F. Hasler, Sep 02 2012
EXAMPLE
a(2) = sqrt(2*3 + A145781(2))= sqrt(2*3 + 3) = sqrt(9) = 3.
PROG
(PARI) j=[]; for (n=1, 30, p = prod(i=1, n, prime(i)); j=concat(j, floor(sqrt((ceil(sqrt(p))^2)))); ); j
(PARI) A216144(n)=sqrtint(prod(k=1, n, prime(k)))+1 \\ - M. F. Hasler, Sep 02 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Sep 02 2012
STATUS
approved