The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216143 E.g.f.: exp( Shw(x) ) where Shw(x) = Sum_{n>=0} (2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!. 5
 1, 1, 1, 17, 65, 1457, 10657, 307841, 3403521, 121414689, 1810995009, 77157569073, 1453708980033, 72128854709329, 1644987113677793, 93235988902015009, 2498605538747794433, 159345372352540823361, 4909485778021467744897, 348042700926255242296657 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 FORMULA E.g.f.: ( -LambertW(-x)*LambertW(x)/x^2 )^(1/(2*x)). a(n) ~ c * n^(n-1), where c = -1/2*exp(1-exp(1))*(LambertW(exp(-1))^(-exp(1)/2)-LambertW(exp(-1))^(exp(1)/2)*exp(2*exp(1))) = 3.11403283... if n is even, and c = 1/2*exp(1-exp(1))*(LambertW(exp(-1))^(-exp(1)/2)+LambertW(exp(-1))^(exp(1)/2)*exp(2*exp(1))) = 4.13355253... if n is odd. - Vaclav Kotesovec, Jul 08 2013 EXAMPLE E.g.f.: A(x) = 1 + x + x^2/2! + 17*x^3/3! + 65*x^4/4! + 1457*x^5/5! +... such that A(x) = exp( Shw(x) ) where Shw(x) = x + 16*x^3/3! + 1296*x^5/5! + 262144*x^7/7! + 100000000*x^9/9! +...+ (2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)! +... Related expansions: Chw(x) = 1 + 3*x^2/2! + 125*x^4/4! + 16807*x^6/6! + 4782969*x^8/8! +...+ (2*n+1)^(2*n-1)*x^(2*n)/(2*n)! +... where Chw(x) + Shw(x) = LambertW(-x)/(-x). Also, A(x)^x is an even function: A(x)^x = 1 + 2*x^2/2! + 76*x^4/4! + 9816*x^6/6! + 2731408*x^8/8! +...+ A215880(2*n)*x^(2*n)/(2*n)! +.... MAPLE a:=series(exp(add((2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)!, n=0..100)), x=0, 20): seq(n!*coeff(a, x, n), n=0..19); # Paolo P. Lava, Mar 27 2019 MATHEMATICA max = 19; Shw[x_] := -(ProductLog[-x] + ProductLog[x])/(2*x); se = Series[Exp[Shw[x]] , {x, 0, max}]; (CoefficientList[se, x] // DeleteCases[#, 0] &)*Range[0, max]! (* Jean-François Alcover, Jun 24 2013 *) PROG (PARI) {a(n)=n!*polcoeff(exp(sum(m=0, n, (2*m+2)^(2*m)*x^(2*m+1)/(2*m+1)!)+x*O(x^n)), n)} (PARI) {a(n)=local(LW=sum(m=1, n+2, -(-1)^m*m^(m-1)*x^m/m!)+x^4*O(x^n)); n!*polcoeff( (-subst(LW, x, -x)*LW/x^2)^(1/(2*x)), n)} for(n=0, 21, print1(a(n), ", ")) CROSSREFS Cf. A215880, A215881. Sequence in context: A156570 A147231 A146815 * A082614 A044155 A044536 Adjacent sequences:  A216140 A216141 A216142 * A216144 A216145 A216146 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 14:07 EDT 2021. Contains 347598 sequences. (Running on oeis4.)