login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp( Shw(x) ) where Shw(x) = Sum_{n>=0} (2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!.
5

%I #18 Mar 12 2024 02:40:33

%S 1,1,1,17,65,1457,10657,307841,3403521,121414689,1810995009,

%T 77157569073,1453708980033,72128854709329,1644987113677793,

%U 93235988902015009,2498605538747794433,159345372352540823361,4909485778021467744897,348042700926255242296657

%N E.g.f.: exp( Shw(x) ) where Shw(x) = Sum_{n>=0} (2*n+2)^(2*n) * x^(2*n+1)/(2*n+1)!.

%H Vincenzo Librandi, <a href="/A216143/b216143.txt">Table of n, a(n) for n = 0..200</a>

%F E.g.f.: ( -LambertW(-x)*LambertW(x)/x^2 )^(1/(2*x)).

%F a(n) ~ c * n^(n-1), where c = -1/2*exp(1-exp(1))*(LambertW(exp(-1))^(-exp(1)/2)-LambertW(exp(-1))^(exp(1)/2)*exp(2*exp(1))) = 3.11403283... if n is even, and c = 1/2*exp(1-exp(1))*(LambertW(exp(-1))^(-exp(1)/2)+LambertW(exp(-1))^(exp(1)/2)*exp(2*exp(1))) = 4.13355253... if n is odd. - _Vaclav Kotesovec_, Jul 08 2013

%e E.g.f.: A(x) = 1 + x + x^2/2! + 17*x^3/3! + 65*x^4/4! + 1457*x^5/5! +...

%e such that A(x) = exp( Shw(x) ) where

%e Shw(x) = x + 16*x^3/3! + 1296*x^5/5! + 262144*x^7/7! + 100000000*x^9/9! +...+ (2*n+2)^(2*n)*x^(2*n+1)/(2*n+1)! +...

%e Related expansions:

%e Chw(x) = 1 + 3*x^2/2! + 125*x^4/4! + 16807*x^6/6! + 4782969*x^8/8! +...+ (2*n+1)^(2*n-1)*x^(2*n)/(2*n)! +...

%e where Chw(x) + Shw(x) = LambertW(-x)/(-x).

%e Also, A(x)^x is an even function:

%e A(x)^x = 1 + 2*x^2/2! + 76*x^4/4! + 9816*x^6/6! + 2731408*x^8/8! +...+ A215880(2*n)*x^(2*n)/(2*n)! +....

%t max = 19; Shw[x_] := -(ProductLog[-x] + ProductLog[x])/(2*x); se = Series[Exp[Shw[x]] , {x, 0, max}]; (CoefficientList[se, x] // DeleteCases[#, 0] &)*Range[0, max]! (* _Jean-François Alcover_, Jun 24 2013 *)

%o (PARI) {a(n)=n!*polcoeff(exp(sum(m=0, n,(2*m+2)^(2*m)*x^(2*m+1)/(2*m+1)!)+x*O(x^n)), n)}

%o (PARI) {a(n)=local(LW=sum(m=1, n+2,-(-1)^m*m^(m-1)*x^m/m!)+x^4*O(x^n)); n!*polcoeff( (-subst(LW, x, -x)*LW/x^2)^(1/(2*x)), n)}

%o for(n=0,21,print1(a(n),", "))

%Y Cf. A215880, A215881.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Sep 02 2012