

A215658


Primes p such that the smallest positive integer k for which p# + k is square satisfies p# + k = k^2, where p# = 2*3*5*7*11*...*p is a primorial.


5




OFFSET

1,1


COMMENTS

The corresponding values of k are 2, 3, 6, 15, 715 = A215659.
The equation p# + k = k^2 has an integer solution k if and only if 1 + 4*p# is a square.
Conjecture: Not the same sequence as A192579, which is finite.
When p is in this sequence, p# = k(k1) is in A161620, the intersection of A002110 and A002378.  Jeppe Stig Nielsen, Mar 27 2018


LINKS

Table of n, a(n) for n=1..5.
C. Aebi and G. Cairns, Partitions of primes, Parabola 45, Issue 1 (2009); see p. 5.


FORMULA

A145781(n) = A216144(n) if and only if prime(n) is a member.
a(n)# = A215659(n)*(A215659(n)1).


EXAMPLE

The smallest square > 17# = 510510 is 715^2 = 17# + 715, so 17 is a member.


MATHEMATICA

t = {}; pm = 1; Do[pm = pm*p; s = Floor[Sqrt[pm]]; If[pm == s*(s+1), AppendTo[t, p]], {p, Prime[Range[100]]}]; t (* T. D. Noe, Sep 05 2012 *)


PROG

PARI for (n=1, 10, if (ceil(sqrt(prod(i=1, n, prime(i))))^2  prod(i=1, n, prime(i))  ceil(sqrt(prod(i=1, n, prime(i)))) == 0, print(prime(n))); ); \\ from Michel Marcus, Sep 05 2012


CROSSREFS

Cf. A002110, A060797, A145781, A216144, A215659, A161620.
Sequence in context: A094575 A145968 A192579 * A295266 A059471 A059496
Adjacent sequences: A215655 A215656 A215657 * A215659 A215660 A215661


KEYWORD

nonn,more


AUTHOR

Jonathan Sondow, Sep 02 2012


STATUS

approved



