OFFSET
1,1
COMMENTS
The corresponding values of k are 2, 3, 6, 15, 715 = A215659.
The equation p# + k = k^2 has an integer solution k if and only if 1 + 4*p# is a square.
Conjecture: Not the same sequence as A192579, which is finite.
When p is in this sequence, p# = k(k-1) is in A161620, the intersection of A002110 and A002378. - Jeppe Stig Nielsen, Mar 27 2018
LINKS
C. Aebi and G. Cairns, Partitions of primes, Parabola 45, Issue 1 (2009); see p. 5.
FORMULA
EXAMPLE
The smallest square > 17# = 510510 is 715^2 = 17# + 715, so 17 is a member.
MATHEMATICA
t = {}; pm = 1; Do[pm = pm*p; s = Floor[Sqrt[pm]]; If[pm == s*(s+1), AppendTo[t, p]], {p, Prime[Range[100]]}]; t (* T. D. Noe, Sep 05 2012 *)
PROG
(PARI) for (n=1, 10, if (ceil(sqrt(prod(i=1, n, prime(i))))^2 - prod(i=1, n, prime(i)) - ceil(sqrt(prod(i=1, n, prime(i)))) == 0, print(prime(n))); ); \\ Michel Marcus, Sep 05 2012
(Python)
from sympy import primorial, integer_nthroot, prime
A215658_list = [prime(i) for i in range(1, 10**2) if integer_nthroot(4*primorial(i)+1, 2)[1]] # Chai Wah Wu, Apr 01 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jonathan Sondow, Sep 02 2012
STATUS
approved