login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343537
Number of partitions of the n-th Fibonacci number into a Fibonacci number of Fibonacci parts.
1
1, 1, 1, 2, 3, 5, 7, 16, 41, 135, 632, 4091, 37020, 478852, 8897512, 240133480, 9489055662, 552854898873, 47794151866058, 6165361571608551, 1192709563056788508, 347571453153709529743, 153189847887607116894958
OFFSET
0,4
FORMULA
a(n) = Sum_{k in {A000045}} A319394(A000045(n),k).
EXAMPLE
a(5) = 5: [5], [3,2], [3,1,1], [2,2,1], [1,1,1,1,1]. Partition [2,1,1,1] is not counted because 4 (the number of parts) is not a Fibonacci number.
a(6) = 7: [8], [5,3], [5,2,1], [3,3,2], [3,2,1,1,1], [2,2,2,1,1], [1,1,1,1,1,1,1,1].
a(7) = 16: [13], [8,5], [8,3,2], [8,2,1,1,1], [5,5,3], [5,5,1,1,1], [5,3,3,1,1], [5,3,2,2,1], [5,2,2,2,2], [5,2,1,1,1,1,1,1], [3,3,3,3,1], [3,3,3,2,2], [3,3,2,1,1,1,1,1], [3,2,2,2,1,1,1,1], [2,2,2,2,2,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1].
MAPLE
f:= n-> (t-> issqr(t+4) or issqr(t-4))(5*n^2):
h:= proc(n) option remember; `if`(f(n), n, h(n-1)) end:
b:= proc(n, i, c) option remember; `if`(n=0 or i=1, `if`(
f(c+n), 1, 0), b(n-i, h(min(n-i, i)), c+1)+b(n, h(i-1), c))
end:
a:= n-> b((<<0|1>, <1|1>>^n)[1, 2]$2, 0):
seq(a(n), n=0..17);
MATHEMATICA
$RecursionLimit = 10000;
f[n_] := With[{t = 5 n^2}, IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4]];
h[n_] := h[n] = If[f[n], n, h[n - 1]] ;
b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, If[f[c+n], 1, 0], b[n-i, h[Min[n-i, i]], c+1] + b[n, h[i-1], c]];
a[n_] := a[n] = With[{m = MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]]}, b[m, m, 0]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Sep 09 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 26 2021
STATUS
approved