The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A343537 Number of partitions of the n-th Fibonacci number into a Fibonacci number of Fibonacci parts. 1
 1, 1, 1, 2, 3, 5, 7, 16, 41, 135, 632, 4091, 37020, 478852, 8897512, 240133480, 9489055662, 552854898873, 47794151866058, 6165361571608551, 1192709563056788508, 347571453153709529743, 153189847887607116894958 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS FORMULA a(n) = Sum_{k in {A000045}} A319394(A000045(n),k). EXAMPLE a(5) = 5: [5], [3,2], [3,1,1], [2,2,1], [1,1,1,1,1].  Partition [2,1,1,1] is not counted because 4 (the number of parts) is not a Fibonacci number. a(6) = 7: [8], [5,3], [5,2,1], [3,3,2], [3,2,1,1,1], [2,2,2,1,1], [1,1,1,1,1,1,1,1]. a(7) = 16: [13], [8,5], [8,3,2], [8,2,1,1,1], [5,5,3], [5,5,1,1,1], [5,3,3,1,1], [5,3,2,2,1], [5,2,2,2,2], [5,2,1,1,1,1,1,1], [3,3,3,3,1], [3,3,3,2,2], [3,3,2,1,1,1,1,1], [3,2,2,2,1,1,1,1], [2,2,2,2,2,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1,1]. MAPLE f:= n-> (t-> issqr(t+4) or issqr(t-4))(5*n^2): h:= proc(n) option remember; `if`(f(n), n, h(n-1)) end: b:= proc(n, i, c) option remember; `if`(n=0 or i=1, `if`(       f(c+n), 1, 0), b(n-i, h(min(n-i, i)), c+1)+b(n, h(i-1), c))     end: a:= n-> b((<<0|1>, <1|1>>^n)[1, 2]\$2, 0): seq(a(n), n=0..17); CROSSREFS Cf. A000045, A098641, A316154, A319394, A344790. Sequence in context: A319913 A094575 A145968 * A192579 A215658 A295266 Adjacent sequences:  A343534 A343535 A343536 * A343538 A343539 A343540 KEYWORD nonn AUTHOR Alois P. Heinz, May 26 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 21:05 EDT 2021. Contains 347651 sequences. (Running on oeis4.)