|
|
A343539
|
|
a(n) = (2*n+1)*Lucas(2*n+1).
|
|
0
|
|
|
1, 12, 55, 203, 684, 2189, 6773, 20460, 60707, 177631, 513996, 1473817, 4194025, 11858508, 33345679, 93320819, 260079468, 722163365, 1998685277, 5515470636, 15180186491, 41680890247, 114197428620, 312260427313, 852296004049, 2322415005324, 6318599122663, 17166545274395
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..27.
Index entries for linear recurrences with constant coefficients, signature (6,-11,6,-1).
|
|
FORMULA
|
G.f.: (1-x)*(1 + 7*x + x^2)/(1 - 3*x + x^2)^2.
a(n) = (2*n+1)*A000032(2*n+1).
a(n) = A146005(2*n+1).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) - a(n-4). - Wesley Ivan Hurt, Apr 19 2021
|
|
MATHEMATICA
|
Table[(2n+1) LucasL[2n+1], {n, 0, 30}] (* Wesley Ivan Hurt, Apr 19 2021 *)
|
|
PROG
|
(Magma) [(2*n+1)*Lucas(2*n+1) : n in [0..40]]; // Wesley Ivan Hurt, Apr 19 2021
|
|
CROSSREFS
|
Bisection of A146005.
Cf. A000032, A002878.
Sequence in context: A275249 A143856 A207102 * A229424 A009653 A133001
Adjacent sequences: A343536 A343537 A343538 * A343540 A343541 A343542
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Harry Richman, Apr 16 2021
|
|
STATUS
|
approved
|
|
|
|