login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343541
For n > 1, a(n) is the largest base b <= prime(n)-1 such that the digits of prime(n)-1 in base b contain the digit b-1.
1
2, 2, 3, 2, 4, 3, 3, 5, 4, 6, 2, 2, 7, 7, 4, 8, 8, 6, 6, 9, 9, 2, 3, 10, 5, 6, 6, 5, 11, 8, 3, 12, 12, 5, 3, 13, 13, 13, 5, 6, 6, 14, 14, 10, 10, 15, 15, 5, 5, 11, 11, 16, 16, 2, 3, 4, 5, 17, 17, 17, 10, 18, 18, 18, 18, 13, 13, 19, 19, 19
OFFSET
2,1
LINKS
FORMULA
a(n) <= (1 + sqrt(4*prime(n) - 3))/2 for all n. Prime(n), which is 111 in some base Q, has a(n) = Q+1. Example: 31 = 6*5 + 1 and it is 111 in base 5. - Devansh Singh, Nov 22 2021
MAPLE
f:= proc(n) local p, b, L;
p:= ithprime(n);
for b from floor((1 + sqrt(4*p - 3))/2) by -1 do
L:= convert(p-1, base, b);
if member(b-1, L) then return b fi
od;
end proc:
map(f, [$2 .. 100]); # Robert Israel, Dec 10 2024
MATHEMATICA
Table[Max@Select[Range[2, Prime@n-1], MemberQ[IntegerDigits[Prime@n-1, #], #-1]&], {n, 2, 71}] (* Giorgos Kalogeropoulos, Nov 22 2021 *)
PROG
(Python)
import sympy
def a_n(N):
a_n=[2]
for i in sympy.primerange(5, N+1):
a_n.append(A338295(i-1))
print(a_n)
def A338295(n):
checker=0
for b in range(n//2, 1, -1):
checker=main_base_check(n, b)
if checker!=0:
break
return checker
def main_base_check(m, b):
while m!=0:
if m%b == b-1:
return b
m = m//b
return 0
a_n(500)
(PARI) a(n) = my(q=prime(n)-1); forstep(b=q, 2, -1, if (vecmax(digits(q, b)) == b-1, return (b))); \\ Michel Marcus, Apr 19 2021
CROSSREFS
Sequence in context: A066241 A334857 A331614 * A060025 A368572 A067399
KEYWORD
nonn,base,look,changed
AUTHOR
Devansh Singh, Apr 18 2021
STATUS
approved