login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060025
Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 6.
8
1, 0, 1, 1, 2, 2, 3, 2, 4, 3, 4, 2, 3, -1, -1, -6, -9, -17, -22, -35, -43, -61, -76, -100, -121, -155, -185, -229, -271, -328, -383, -458, -529, -622, -715, -830, -946, -1090, -1233, -1407, -1584, -1794, -2008, -2261, -2517, -2816, -3124, -3476, -3838, -4253, -4677, -5159, -5656, -6213
OFFSET
0,5
COMMENTS
Difference of the number of partitions of n+5 into 5 parts and the number of partitions of n+5 into 6 parts. - Wesley Ivan Hurt, Apr 16 2019
LINKS
P. A. MacMahon, Perpetual reciprocants, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596.
Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1,0,-2,0,1,1,1,1,0,-2,0,-1,0,0,1,1,-1).
FORMULA
a(n) = A026811(n+5) - A026812(n+5). - Wesley Ivan Hurt, Apr 16 2019
G.f.: (1 - x - x^6) / ((1 - x)^6*(1 + x)^3*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, Apr 17 2019
MATHEMATICA
With[{nn=6}, CoefficientList[Series[(1-x-x^nn)/Times@@(1-x^Range[nn]), {x, 0, 60}], x]] (* Harvey P. Dale, May 15 2016 *)
PROG
(PARI) Vec((1 - x - x^6) / ((1 - x)^6*(1 + x)^3*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Apr 17 2019
(Magma) m:=6; R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!( (1-x-x^m)/( (&*[1-x^j: j in [1..m]]) ) )); // G. C. Greubel, Apr 17 2019
(Sage) m=6; ((1-x-x^m)/( product(1-x^j for j in (1..m)) )).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, Apr 17 2019
CROSSREFS
Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), this sequence (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).
Sequence in context: A334857 A331614 A343541 * A368572 A067399 A106737
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Mar 17 2001
STATUS
approved