login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060022
Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 3.
8
1, 0, 1, 0, 0, -1, -1, -3, -3, -5, -6, -8, -9, -12, -13, -16, -18, -21, -23, -27, -29, -33, -36, -40, -43, -48, -51, -56, -60, -65, -69, -75, -79, -85, -90, -96, -101, -108, -113, -120, -126, -133, -139, -147, -153, -161, -168, -176, -183, -192, -199, -208, -216, -225, -233, -243, -251, -261, -270, -280
OFFSET
0,8
COMMENTS
Difference between the number of partitions of n+2 into 2 parts and the number of partitions of n+2 into 3 parts. - Wesley Ivan Hurt, Apr 16 2019
LINKS
P. A. MacMahon, Perpetual reciprocants, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596.
FORMULA
a(n) = A004526(n+2) - A069905(n+2). - Wesley Ivan Hurt, Apr 16 2019
From Colin Barker, Apr 17 2019: (Start)
G.f.: (1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)).
a(n) = a(n-1) + a(n-2) - a(n-4) - a(n-5) + a(n-6) for n>5.
(End)
PROG
(PARI) Vec((1 - x - x^3) / ((1 - x)^3*(1 + x)*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, Apr 17 2019
CROSSREFS
Cf. For other values of N: this sequence (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), A060029 (N=10).
Sequence in context: A309947 A138373 A011976 * A187679 A048274 A351012
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Mar 17 2001
STATUS
approved