login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060029
Expansion of (1-x-x^N)/((1-x)(1-x^2)(1-x^3)...(1-x^N)) for N = 10.
8
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 11, 12, 18, 19, 26, 29, 37, 40, 51, 53, 65, 68, 79, 80, 92, 87, 94, 84, 82, 58, 45, -1, -36, -109, -180, -297, -413, -594, -780, -1042, -1325, -1704, -2112, -2647, -3228, -3961, -4772, -5769, -6867, -8206, -9682, -11446, -13402, -15710
OFFSET
0,5
COMMENTS
Difference of the number of partitions of n+9 into 9 parts and the number of partitions of n+9 into 10 parts. - Wesley Ivan Hurt, Apr 16 2019
LINKS
P. A. MacMahon, Perpetual reciprocants, Proc. London Math. Soc., 17 (1886), 139-151; Coll. Papers II, pp. 584-596.
Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, -1, 0, -1, 0, 0, 0, -1, 1, 1, 1, 2, 0, 0, -1, -1, -1, -1, -3, 0, 0, 1, 1, 2, 2, 1, 1, 0, 0, -3, -1, -1, -1, -1, 0, 0, 2, 1, 1, 1, -1, 0, 0, 0, -1, 0, -1, 0, 0, 1, 1, -1).
FORMULA
a(n) = A026815(n+9) - A026816(n+9). - Wesley Ivan Hurt, Apr 16 2019
MATHEMATICA
CoefficientList[Series[(1-x-x^10)/Times@@(1-x^Range[10]), {x, 0, 60}], x] (* Harvey P. Dale, May 15 2016 *)
CROSSREFS
Cf. For other values of N: A060022 (N=3), A060023 (N=4), A060024 (N=5), A060025 (N=6), A060026 (N=7), A060027 (N=8), A060028 (N=9), this sequence (N=10).
Sequence in context: A208963 A011142 A232047 * A100471 A266777 A248518
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Mar 17 2001
STATUS
approved