login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146005
a(n) = n*Lucas(n).
4
0, 1, 6, 12, 28, 55, 108, 203, 376, 684, 1230, 2189, 3864, 6773, 11802, 20460, 35312, 60707, 104004, 177631, 302540, 513996, 871266, 1473817, 2488368, 4194025, 7057518, 11858508, 19898116, 33345679, 55814940, 93320819, 155867104
OFFSET
0,3
FORMULA
a(n) = n*A000032(n).
G.f.: x(1+4x-x^2)/(1-x-x^2)^2.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4).
a(n) = A000045(n)-5*A000045(n+1)+5*A010049(n+1).
a(n) = A045925(n)+2*A099920(n-1).
E.g.f.: x*exp(x/2)*(cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2)). - G. C. Greubel, Jan 30 2016
MATHEMATICA
Table[LucasL[n, 1]*n, {n, 0, 36}] (* Zerinvary Lajos, Jul 09 2009 *)
CoefficientList[Series[x * (1 + 4*x - x^2)/(1 - x - x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
LinearRecurrence[{2, 1, -2, -1}, {0, 1, 6, 12}, 40] (* Harvey P. Dale, Apr 03 2013 *)
PROG
(Magma) I:=[0, 1, 6, 12]; [n le 4 select I[n] else 2*Self(n-1) + Self(n-2) - 2*Self(n-3) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 13 2012
CROSSREFS
Sequence in context: A057341 A068412 A183026 * A325812 A323652 A375235
KEYWORD
easy,nonn
AUTHOR
R. J. Mathar, Oct 26 2008
STATUS
approved