login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073436
Smallest k such that k mod pi(k) = n.
4
2, 3, 5, 7, 16, 21, 22, 25, 26, 29, 32, 65, 66, 70, 77, 78, 82, 86, 87, 88, 92, 93, 94, 95, 99, 106, 116, 117, 118, 119, 218, 219, 220, 221, 222, 247, 248, 249, 250, 255, 256, 261, 262, 267, 268, 289, 290, 291, 292, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306
OFFSET
0,1
COMMENTS
a(n) > a(n-1) except for 68, 180, 1051, 6454, 6456, 6459, 40073, 40078, ..., . - Robert G. Wilson v, Feb 24 2023
LINKS
FORMULA
a(n) = Min{k: k mod A000720(k) = n} = Min{k: A065134(k) = n}.
EXAMPLE
Remainder 7 appears first as 25 mod pi(25) = 25 mod 9 = 7, so a(7) = 25.
MAPLE
with(numtheory); f:=proc(n) local i, j, k; for i from 2 to 10000 do if i mod pi(i) = n then RETURN(i); fi; od: RETURN(-1); end; # N. J. A. Sloane, Sep 01 2008
MATHEMATICA
a = Compile[{{n, _Integer}}, Block[{k = 2}, While[ Mod[k, PrimePi@ k] != n, k++]; k]]; Array[a, 59, 0] (* Robert G. Wilson v, Feb 24 2023 *)
PROG
(PARI) a(n)={my(q=0, k=2); forprime(p=3, oo, q++; while(k<p, if(k%q==n, return(k)); k++))} \\ Andrew Howroyd, Feb 23 2023
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 31 2002
EXTENSIONS
a(0) from Robert G. Wilson v, Feb 23 2023
STATUS
approved