login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344790
Number of compositions of the n-th Fibonacci number into a Fibonacci number of Fibonacci parts.
3
1, 1, 1, 2, 4, 10, 43, 713, 79190, 214727233, 93022035568623, 154947556313144561674052, 151111389118856626519180244830493192189, 317985304587719144905460952112822027368399484007468648195691719
OFFSET
0,4
LINKS
EXAMPLE
a(4) = 4: [3], [2,1], [1,2], [1,1,1].
a(5) = 10: [5], [3,2], [3,1,1], [2,3], [2,2,1], [2,1,2], [1,3,1], [1,2,2], [1,1,3], [1,1,1,1,1].
MAPLE
f:= n-> (t-> issqr(t+4) or issqr(t-4))(5*n^2):
b:= proc(n, c) option remember; `if`(n=0, `if`(f(c),
1, 0), add(`if`(f(j), b(n-j, c+1), 0), j=1..n))
end:
a:= n-> b((<<0|1>, <1|1>>^n)[1, 2], 0):
seq(a(n), n=0..13);
MATHEMATICA
f[n_] := Function[t, IntegerQ@Sqrt[t+4] || IntegerQ@Sqrt[t-4]][5*n^2];
b[n_, c_] := b[n, c] = If[n == 0, If[f[c], 1, 0],
Sum[If[f[j], b[n-j, c+1], 0], {j, 1, n}]];
a[n_] := b[MatrixPower[{{0, 1}, {1, 1}}, n ][[1, 2]], 0];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 04 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 28 2021
STATUS
approved