login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344789
Number of partitions of the n-th nonprime number into a nonprime number of nonprime parts.
1
1, 2, 2, 2, 4, 3, 6, 8, 11, 11, 19, 27, 32, 37, 55, 63, 78, 88, 108, 149, 204, 232, 274, 313, 371, 497, 556, 654, 864, 1135, 1267, 1476, 1915, 2142, 2474, 2754, 3182, 4070, 4528, 5190, 5769, 6594, 8347, 10530, 11666, 13240, 14657, 16597, 20747, 22924, 25854
OFFSET
1,2
LINKS
EXAMPLE
a(5) = 4: [9], [6,1,1,1], [4,1,1,1,1,1], [1,1,1,1,1,1,1,1,1].
a(6) = 3: [10], [4,4,1,1], [1,1,1,1,1,1,1,1,1,1].
a(7) = 6: [12], [9,1,1,1], [6,4,1,1], [4,4,1,1,1,1], [4,1,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1,1,1,1,1].
MAPLE
c:= proc(n) option remember; local k; if n=1 then 1 else
for k from 1+c(n-1) while isprime(k) do od; k fi
end:
h:= proc(n) option remember; `if`(isprime(n), h(n-1), n) end:
b:= proc(n, i, c) option remember; `if`(n=0 or i=1, `if`(isprime(
c+n), 0, 1), b(n-i, h(min(n-i, i)), c+1)+b(n, h(i-1), c))
end:
a:= n-> b(c(n)$2, 0):
seq(a(n), n=1..55);
MATHEMATICA
c[n_] := c[n] = Module[{k}, If[n == 1, 1,
For[k = 1+c[n-1], PrimeQ[k], k++]; k]];
h[n_] := h[n] = If[PrimeQ[n], h[n-1], n];
b[n_, i_, c_] := b[n, i, c] = If[n == 0 || i == 1, If[PrimeQ[
c+n], 0, 1], b[n-i, h[Min[n-i, i]], c+1] + b[n, h[i-1], c]];
a[n_] := b[c[n], c[n], 0];
Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Sep 08 2022, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A368689 A210596 A240078 * A228660 A228796 A155837
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 28 2021
STATUS
approved