login
A228660
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, diagonally or antidiagonally.
13
1, 1, 2, 2, 2, 4, 3, 8, 5, 8, 5, 14, 34, 12, 16, 8, 38, 78, 140, 29, 32, 13, 80, 335, 416, 574, 70, 64, 21, 194, 968, 2844, 2228, 2348, 169, 128, 34, 434, 3556, 11148, 24109, 11912, 9598, 408, 256, 55, 1016, 11245, 62368, 128740, 203762, 63688, 39224, 985, 512, 89
OFFSET
1,3
COMMENTS
Table starts
...1...1......2.......3.........5..........8...........13............21
...2...2......8......14........38.........80..........194...........434
...4...5.....34......78.......335........968.........3556.........11245
...8..12....140.....416......2844......11148........62368........275708
..16..29....574....2228.....24109.....128740......1096624.......6780585
..32..70...2348...11912....203762....1482892.....19236832.....166237206
..64.169...9598...63688...1720343...17074988....337258048....4073313193
.128.408..39224..340480..14516920..196565912...5910459096...99770848656
.256.985.160282.1820208.122469941.2262692928.103561279328.2443423182349
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..1....1..0..0..0....1..0..0..1....1..0..1..0....1..0..0..1
..1..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..0..0
..0..0..0..0....1..0..1..0....0..0..0..0....1..0..1..0....0..0..1..0
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..1..0....0..0..0..0
CROSSREFS
Column 1 is A000079(n-1)
Column 2 is A000129
Row 1 is A000045
Sequence in context: A210596 A240078 A344789 * A228796 A155837 A096445
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Aug 29 2013
STATUS
approved