login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215660
McKay-Thompson series of class 18B for the Monster group with a(0) = 5.
1
1, 5, 7, 10, 27, 38, 82, 108, 207, 278, 486, 644, 1052, 1404, 2182, 2880, 4293, 5654, 8182, 10692, 15076, 19604, 27108, 35000, 47547, 61020, 81713, 104236, 137781, 174800, 228498, 288360, 373174, 468566, 601020, 751036, 955642, 1188756, 1501730, 1859944
OFFSET
-1,2
LINKS
FORMULA
Expansion of (eta(q^3)^8 + 4 * eta(q^6)^8) / (eta(q) * eta(q^2) * eta(q^3)^2 * eta(q^6)^2 * eta(q^9) * eta(q^18)) in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = f(t) where q = exp(2 Pi i t).
a(n) = A215413(n) + 4 * A212484(n).
a(n) = A058532(n) = A215407(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
1/q + 5 + 7*q + 10*q^2 + 27*q^3 + 38*q^4 + 82*q^5 + 108*q^6 + 207*q^7 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q^3]^8+4*q*QP[q^6]^8)/(QP[q]*QP[q^2]*QP[q^3]^2* QP[q^6]^2*QP[q^9]*QP[q^18]) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 16 2015, adapted from PARI *)
eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[ q*(eta[q^3]^8 + 4*eta[q^6]^8)/(eta[q]*eta[q^2]*eta[q^3]^2*eta[q^6]^2* eta[q^9]*eta[q^18]), {q, 0, 100}], q]; Table[a[[n]], {n, 1, 80}] (* G. C. Greubel, Jul 03 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( (eta(x^3 + A)^8 + 4 * x * eta(x^6 + A)^8) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^6 + A)^2 * eta(x^9 + A) * eta(x^18 + A)), n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 19 2012
STATUS
approved