

A015849


Numbers n such that phi(n + 9)  sigma(n) for n not congruent to 0 (mod 3).


2



5, 7, 10, 31, 47, 79, 127, 145, 161, 223, 238, 239, 355, 367, 371, 376, 418, 455, 463, 479, 748, 863, 1039, 1045, 1087, 1103, 1118, 1327, 1423, 1439, 1567, 1583, 1823, 1886, 1999, 2065, 2108, 2143, 2201, 2207, 2239, 2447, 2461, 2687, 2767, 2840, 2927, 2975
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Includes primes p such that (p+9)/8 is prime. Thus Dickson's conjecture implies the sequence is infinite.  Robert Israel, Jan 10 2019


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


MAPLE

select(n > (numtheory:sigma(n)/numtheory:phi(n+9))::integer, [seq(seq(3*i+j, j=1..2), i=0..1000)]); # Robert Israel, Jan 10 2019


MATHEMATICA

Select[Range[1, 5000], Divisible[DivisorSigma[1, #], EulerPhi[9 + #]] && ! Mod[#, 3] == 0 &] (* David Nacin, Mar 04 2012 *)


PROG

(PARI) is(n)=n%3 && sigma(n)%eulerphi(n+9)==0 \\ Charles R Greathouse IV, Sep 25 2012


CROSSREFS

Cf. A015827.
Sequence in context: A131998 A141443 A215660 * A059303 A061523 A119653
Adjacent sequences: A015846 A015847 A015848 * A015850 A015851 A015852


KEYWORD

nonn


AUTHOR

Robert G. Wilson v


STATUS

approved



