Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 15 2021 21:30:21
%S 1,2,3,6,15,49,210,1191,8981,90405,1219297,22105506,540476679,
%T 17875316557,802011318369,48947781204529,4073596070782653,
%U 463360670014324153,72183972733773232361,15430254274957714069057
%N G.f.: Sum_{n>=0} x^n * (1+x)^(2^n).
%H Vaclav Kotesovec, <a href="/A121688/b121688.txt">Table of n, a(n) for n = 0..100</a>
%F a(n) = Sum_{k=0..n} C(2^k,n-k).
%F Lim_{n->infinity} a(n)^(1/n^2) = 2^(1/4). - _Vaclav Kotesovec_, Oct 05 2020
%F G.f.: Sum_{n>=0} ( log(1 + x)^n / n! ) / (1 - 2^n*x). - _Paul D. Hanna_, Jan 23 2021
%p A121688:= n-> add(binomial(2^k,n-k), k=0..n); seq(A121688(n), n=0..20); # _G. C. Greubel_, Mar 15 2021
%t Table[Sum[Binomial[2^k,n-k], {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Oct 05 2020 *)
%o (PARI) a(n)=sum(k=0,n,binomial(2^k,n-k))
%o (Sage) [sum(binomial(2^k, n-k) for k in (0..n)) for n in (0..20)] # _G. C. Greubel_, Mar 15 2021
%o (Magma) [(&+[Binomial(2^k, n-k): k in [0..n]]): n in [0..20]]; // _G. C. Greubel_, Mar 15 2021
%Y Cf. A136501.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Aug 15 2006