The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136501 Triangle, read by rows, where T(n,k) = C(2^k,n-k) for n>=k>=0. 3
 1, 1, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 8, 1, 0, 0, 4, 28, 16, 1, 0, 0, 1, 56, 120, 32, 1, 0, 0, 0, 70, 560, 496, 64, 1, 0, 0, 0, 56, 1820, 4960, 2016, 128, 1, 0, 0, 0, 28, 4368, 35960, 41664, 8128, 256, 1, 0, 0, 0, 8, 8008, 201376, 635376, 341376, 32640, 512, 1, 0, 0, 0, 1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS G. C. Greubel, Rows n = 0..50 of the triangle, flattened EXAMPLE Triangle begins:   1;   1, 1;   0, 2, 1;   0, 1, 4,  1;   0, 0, 6,  8,     1;   0, 0, 4, 28,    16,      1;   0, 0, 1, 56,   120,     32,       1;   0, 0, 0, 70,   560,    496,      64,        1;   0, 0, 0, 56,  1820,   4960,    2016,      128,       1;   0, 0, 0, 28,  4368,  35960,   41664,     8128,     256,      1;   0, 0, 0,  8,  8008, 201376,  635376,   341376,   32640,    512,    1;   0, 0, 0,  1, 11440, 906192, 7624512, 10668000, 2763520, 130816, 1024, 1; MATHEMATICA Table[Binomial[2^k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 15 2021 *) PROG (PARI) T(n, k)=binomial(2^k, n-k) (Magma) [Binomial(2^k, n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 15 2021 (Sage) flatten([[binomial(2^k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 15 2021 CROSSREFS Cf. A014070 (central terms), A121688 (row sums), A136502 (matrix inverse). Sequence in context: A287698 A109970 A116088 * A180983 A127709 A343730 Adjacent sequences:  A136498 A136499 A136500 * A136502 A136503 A136504 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jan 01 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 20 00:16 EDT 2021. Contains 345154 sequences. (Running on oeis4.)