|
|
A127709
|
|
Triangle T(n, d) = the number of isomorphism classes of smooth Fano d-polytopes with n vertices, read by rows (n >= 2, 1 <= d < n).
|
|
1
|
|
|
1, 0, 1, 0, 2, 1, 0, 1, 4, 1, 0, 1, 7, 9, 1, 0, 0, 4, 28, 15, 1, 0, 0, 2, 47, 91, 26, 1, 0, 0, 0, 27, 268, 257, 40, 1, 0, 0, 0, 10, 312, 1318, 643, 62, 1, 0, 0, 0, 1, 137, 2807, 5347, 1511, 91, 1, 0, 0, 0, 1, 35, 2204, 19516, 19453, 3331
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,5
|
|
LINKS
|
Table of n, a(n) for n=2..65.
Mikkel Obro, An algorithm for the classification of smooth Fano polytopes, arXiv:0704.0049 [math.CO], Apr 02 2007, p. 15.
Mikkel Øbro, Classification of smooth Fano polytopes, PhD thesis, 2007. See Appendix A.
Andreas Paffenholz, Smooth Reflexive Lattice Polytopes
|
|
EXAMPLE
|
Table begins:
n |d=1|d=2|d=3|d=4|d=5|d=6|d=7
1 |
2 | 1 |
3 | | 1 |
4 | | 2 | 1 |
5 | | 1 | 4 | 1 |
6 | | 1 | 7 | 9 | 1 |
7 | | | 4 | 28| 15| 1 |
8 | | | 2 | 47| 91| 26| 1
9 | | | | 27|268|257| 40
|
|
CROSSREFS
|
Column sums are A140296.
Sequence in context: A116088 A136501 A180983 * A343730 A343761 A336423
Adjacent sequences: A127706 A127707 A127708 * A127710 A127711 A127712
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Jonathan Vos Post, Apr 03 2007
|
|
EXTENSIONS
|
Edited and leading zeroes in rows and few more values added by Andrey Zabolotskiy, Sep 19 2018
|
|
STATUS
|
approved
|
|
|
|